STORMWATER MANAGEMENT
DESIGN CALCULATIONS

345 Oak Street
Assessors Map F15-38
Pembroke, Massachusetts

Prepared for

Champion Builders Inc.
P.O. Box #1414
Duxbury, MA 02331

May 30, 2019
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>2</td>
</tr>
<tr>
<td>Summary</td>
<td>3</td>
</tr>
<tr>
<td>Peak Rate Summary</td>
<td>3</td>
</tr>
<tr>
<td>Overall Site Analysis</td>
<td>Section I</td>
</tr>
<tr>
<td>HydroCad Report</td>
<td>5-32</td>
</tr>
<tr>
<td>Stormwater Compliance</td>
<td>Section II</td>
</tr>
<tr>
<td>Standards 1-10</td>
<td>34-36</td>
</tr>
<tr>
<td>Operation and Maintenance Plan</td>
<td>Section III</td>
</tr>
<tr>
<td>During Construction</td>
<td>38-39</td>
</tr>
<tr>
<td>Post Construction</td>
<td>40-41</td>
</tr>
<tr>
<td>NRCS Custom Soils Report</td>
<td>42-57</td>
</tr>
<tr>
<td>Soil Logs</td>
<td>Attached</td>
</tr>
<tr>
<td>Site Plan & Tributary Area Plans Pre & Post</td>
<td>Attached</td>
</tr>
</tbody>
</table>
SUMMARY

The project is the redevelopment of an existing building at 345 Oak Street, Pembroke. The new development will include the construction of a 2,400 S.F. office building with 33 parking spaces, and a 4 car garage.

Stormwater on site is managed through the use of 7 –225’ long x 36” diameter polyethylene pipes that fully store the 2, 10, and 25 year storm flow and slowly release the water into the nearby drop inlet. High groundwater and poor soils restrict the feasibility of onsite infiltration of stormwater. A 1” diameter orifice at the bottom of the weir placed inside of the proposed outlet structure controls the flow, with a 6” diameter orifice acting as the emergency overflow. Calculations show peak flow rates post construction to be lower for the 2, 10, 25, and 100 year storms.

This analysis was prepared to demonstrate Compliance with the Massachusetts Stormwater Management Regulations and the Town of Pembroke Rules and Regulations for Stormwater Management.

This analysis is divided into the following sections:

Section I Overall Site Analysis
Section II Compliance with Massachusetts Storm water Management Regulations
Section III Operation And Maintenance Plan

The calculations have been performed for the 2, 10, 25, 100-year 24 hour storm event, using the HydroCAD computer program. This computer program is based upon the Soils Conservation Service (SCS) TR-20 and TR-55 computer models and uses the SCS Curvilinear Unit rainfall distribution.

Peak Rate Summary

The following summary details a reduction in Peak Rate runoff. Values are in cubic feet per second.

<table>
<thead>
<tr>
<th></th>
<th>2 YEAR</th>
<th></th>
<th>10 YEAR</th>
<th></th>
<th>25 YEAR</th>
<th></th>
<th>100 YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRE</td>
<td>POST</td>
<td>PRE</td>
<td>POST</td>
<td>PRE</td>
<td>POST</td>
<td>PRE</td>
</tr>
<tr>
<td>CB1</td>
<td>0.23</td>
<td>0.22</td>
<td>0.41</td>
<td>0.38</td>
<td>0.53</td>
<td>0.49</td>
<td>0.72</td>
</tr>
<tr>
<td>CB2</td>
<td>0.04</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
<td>0.08</td>
<td>0.04</td>
<td>0.11</td>
</tr>
<tr>
<td>STREET</td>
<td>1.76</td>
<td>0.29</td>
<td>2.87</td>
<td>0.47</td>
<td>3.65</td>
<td>0.60</td>
<td>4.88</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.03</td>
<td>0.53</td>
<td>3.33</td>
<td>0.88</td>
<td>4.26</td>
<td>1.13</td>
<td>5.72</td>
</tr>
</tbody>
</table>
Section I
Overall Site Analysis
Area Listing (all nodes)

<table>
<thead>
<tr>
<th>Area (sq-ft)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>58,152</td>
<td>79</td>
<td>50-75% Grass cover, Fair, HSG C (0S, 1S, 2S, 3S, 5S, 6S, 7S, 8S)</td>
</tr>
<tr>
<td>24,001</td>
<td>98</td>
<td>Paved parking, HSG C (0S, 3S, 5S, 7S)</td>
</tr>
<tr>
<td>4,946</td>
<td>98</td>
<td>Roofs, HSG C (3S, 5S, 7S)</td>
</tr>
<tr>
<td>1,643</td>
<td>98</td>
<td>Unconnected pavement, HSG C (3S, 5S, 7S)</td>
</tr>
<tr>
<td>88,742</td>
<td>86</td>
<td>TOTAL AREA</td>
</tr>
</tbody>
</table>
Soil Listing (all nodes)

<table>
<thead>
<tr>
<th>Area (sq-ft)</th>
<th>Soil Group</th>
<th>Subcatchment Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>HSG A</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>HSG B</td>
<td></td>
</tr>
<tr>
<td>88,742</td>
<td>HSG C</td>
<td>0S, 1S, 2S, 3S, 5S, 6S, 7S, 8S</td>
</tr>
<tr>
<td>0</td>
<td>HSG D</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>88,742</td>
<td>TOTAL AREA</td>
<td></td>
</tr>
</tbody>
</table>
Ground Covers (all nodes)

<table>
<thead>
<tr>
<th>HSG-A (sq-ft)</th>
<th>HSG-B (sq-ft)</th>
<th>HSG-C (sq-ft)</th>
<th>HSG-D (sq-ft)</th>
<th>Other (sq-ft)</th>
<th>Total (sq-ft)</th>
<th>Ground Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>58,152</td>
<td>0</td>
<td>0</td>
<td>58,152</td>
<td>50-75% Grass cover, Fair</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>24,001</td>
<td>0</td>
<td>0</td>
<td>24,001</td>
<td>Paved parking</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>4,946</td>
<td>0</td>
<td>0</td>
<td>4,946</td>
<td>Roofs</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1,643</td>
<td>0</td>
<td>0</td>
<td>1,643</td>
<td>Unconnected pavement</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>88,742</td>
<td>0</td>
<td>0</td>
<td>88,742</td>
<td>TOTAL AREA</td>
</tr>
</tbody>
</table>
Subcatchment 0S: Post-Street
Runoff Area=6,350 sf 14.90% Impervious Runoff Depth=1.70"
Flow Length=50’ Slope=0.0120 '/' Tc=6.5 min CN=82 Runoff=0.29 cfs 900 cf

Subcatchment 1S: Post-CB1
Runoff Area=5,213 sf 0.00% Impervious Runoff Depth=1.49"
Flow Length=50’ Slope=0.0120 '/' Tc=6.5 min CN=79 Runoff=0.20 cfs 647 cf

Subcatchment 2S: Post-CB2
Runoff Area=420 sf 0.00% Impervious Runoff Depth=1.49"
Flow Length=50’ Slope=0.0120 '/' Tc=6.5 min CN=79 Runoff=0.02 cfs 52 cf

Subcatchment 3S: Post-1
Runoff Area=18,392 sf 67.08% Impervious Runoff Depth=2.54"
Flow Length=50’ Slope=0.0120 '/' Tc=6.5 min CN=92 Runoff=0.29 cfs 3,895 cf

Subcatchment 5S: Post-2
Runoff Area=420 sf 0.00% Impervious Runoff Depth=1.49"
Flow Length=50’ Slope=0.0120 '/' Tc=6.5 min CN=79 Runoff=0.02 cfs 52 cf

Subcatchment 6S: Pre-CB1
Runoff Area=6,022 sf 0.00% Impervious Runoff Depth=1.49"
Flow Length=50’ Slope=0.0120 '/' Tc=6.5 min CN=79 Runoff=0.02 cfs 52 cf

Subcatchment 7S: Pre-Street
Runoff Area=37,415 sf 22.82% Impervious Runoff Depth=1.77"
Flow Length=50’ Slope=0.0120 '/' Tc=6.5 min CN=83 Runoff=1.76 cfs 5,534 cf

Subcatchment 8S: Pre-CB2
Runoff Area=933 sf 0.00% Impervious Runoff Depth=1.49"
Flow Length=50’ Slope=0.0120 '/' Tc=6.5 min CN=79 Runoff=0.04 cfs 116 cf

Reach 8R: ADS Pipe
Avg. Flow Depth=0.05’ Max Vel=2.75 fps Inflow=0.03 cfs 2,556 cf
8.0" Round Pipe n=0.012 L=27.0’ S=0.0619 '/' Capacity=2.98 cfs Outflow=0.03 cfs 2,555 cf

Pond 0P: Post-Total
Inflow=0.53 cfs 4,154 cf
Primary=0.53 cfs 4,154 cf

Pond 1P: CB1
Inflow=0.22 cfs 3,202 cf
Primary=0.22 cfs 3,202 cf

Pond 2P: Pipe Storage
Peak Elev=86.35’ Storage=5,060 cf Inflow=2.09 cfs 6,347 cf
Outflow=0.03 cfs 2,556 cf

Pond 3P: Tank 1
Peak Elev=89.28’ Storage=235 cf Inflow=1.20 cfs 3,895 cf
12.0” Round Culvert n=0.010 L=15.0’ S=0.0100 '/' Outflow=1.20 cfs 3,694 cf

Pond 5P: Tank 2
Peak Elev=89.17’ Storage=229 cf Inflow=0.89 cfs 2,854 cf
12.0” Round Culvert n=0.010 L=15.0’ S=0.0100 '/' Outflow=0.89 cfs 2,653 cf

Pond 6P: Pre-Total
Inflow=2.03 cfs 6,396 cf
Primary=2.03 cfs 6,396 cf

Total Runoff Area = 88,742 sf Runoff Volume = 14,743 cf Average Runoff Depth = 1.99"
65.53% Pervious = 58,152 sf 34.47% Impervious = 30,590 sf
345 Oak Drainage

Type III 24-hr 10-Year Rainfall=4.70”

Prepared by Grady Consulting, LLC
Printed 5/29/2019

HydroCAD® 10.00-21 s/n 09955 © 2018 HydroCAD Software Solutions LLC
Page 6

- **Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points**
- **Runoff by SCS TR-20 method, UH=SCS, Weighted-CN**
- **Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method**

<table>
<thead>
<tr>
<th>Subcatchment 0S: Post-Street</th>
<th>Runoff Area=6,350 sf 14.90% Impervious Runoff Depth=2.81” Flow Length=50’ Slope=0.0120 ′/′ Tc=6.5 min CN=82 Runoff=0.47 cfs 1,488 cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcatchment 1S: Post-CB1</td>
<td>Runoff Area=5,213 sf 0.00% Impervious Runoff Depth=2.55” Flow Length=50’ Slope=0.0120 ′/′ Tc=6.5 min CN=79 Runoff=0.35 cfs 1,106 cf</td>
</tr>
<tr>
<td>Subcatchment 2S: Post-CB2</td>
<td>Runoff Area=420 sf 0.00% Impervious Runoff Depth=2.55” Flow Length=50’ Slope=0.0120 ′/′ Tc=6.5 min CN=79 Runoff=0.03 cfs 89 cf</td>
</tr>
<tr>
<td>Subcatchment 3S: Post-1</td>
<td>Runoff Area=18,392 sf 67.08% Impervious Runoff Depth=3.80” Flow Length=50’ Slope=0.0120 ′/′ Tc=6.5 min CN=92 Runoff=1.76 cfs 5,819 cf</td>
</tr>
<tr>
<td>Subcatchment 5S: Post-2</td>
<td>Runoff Area=13,997 sf 62.64% Impervious Runoff Depth=3.69” Flow Length=50’ Slope=0.0120 ′/′ Tc=6.5 min CN=91 Runoff=1.31 cfs 4,306 cf</td>
</tr>
<tr>
<td>Subcatchment 6S: Pre-CB1</td>
<td>Runoff Area=6,022 sf 0.00% Impervious Runoff Depth=2.55” Flow Length=50’ Slope=0.0120 ′/′ Tc=6.5 min CN=79 Runoff=0.41 cfs 1,277 cf</td>
</tr>
<tr>
<td>Subcatchment 7S: Pre-Street</td>
<td>Runoff Area=37,415 sf 22.82% Impervious Runoff Depth=2.90” Flow Length=50’ Slope=0.0120 ′/′ Tc=6.5 min CN=83 Runoff=2.87 cfs 9,054 cf</td>
</tr>
<tr>
<td>Subcatchment 8S: Pre-CB2</td>
<td>Runoff Area=933 sf 0.00% Impervious Runoff Depth=2.55” Flow Length=50’ Slope=0.0120 ′/′ Tc=6.5 min CN=79 Runoff=0.06 cfs 198 cf</td>
</tr>
</tbody>
</table>

Reach 8R: ADS Pipe
Avg. Flow Depth=0.05’ Max Vel=2.92 fps Inflow=0.04 cfs 3,176 cf
8.0” Round Pipe n=0.012 L=27.0’ S=0.0519 ′/′ Capacity=2.98 cfs Outflow=0.04 cfs 3,176 cf

Pond 0P: Post-Total
Inflow=0.88 cfs 5,859 cf
Primary=0.88 cfs 5,859 cf

Pond 1P: CB1
Inflow=0.38 cfs 4,281 cf
Primary=0.38 cfs 4,281 cf

Pond 2P: Pipe Storage
Peak Elev=86.97’ Storage=8,062 cf Inflow=3.07 cfs 9,723 cf
Outflow=0.04 cfs 3,176 cf

Pond 3P: Tank 1
Peak Elev=89.45’ Storage=245 cf Inflow=1.76 cfs 5,819 cf
12.0” Round Culvert n=0.010 L=15.0’ S=0.0100 ′/′ Outflow=1.76 cfs 5,618 cf

Pond 5P: Tank 2
Peak Elev=89.31’ Storage=237 cf Inflow=1.31 cfs 4,306 cf
12.0” Round Culvert n=0.010 L=15.0’ S=0.0100 ′/′ Outflow=1.31 cfs 4,105 cf

Pond 6P: Pre-Total
Inflow=3.33 cfs 10,530 cf
Primary=3.33 cfs 10,530 cf

Total Runoff Area = 88,742 sf Runoff Volume = 23,337 cf Average Runoff Depth = 3.16”
65.53% Pervious = 58,152 sf 34.47% Impervious = 30,590 sf
Subcatchment 0S: Post-Street
- Runoff Area: 6,350 sf
 - Impervious: 14.90%
 - Depth: 3.62"
- Flow Length: 50'
- Slope: 0.0120 '/'
- Tc: 6.5 min
- CN: 82
- Runoff: 0.60 cfs
 - Volume: 1,916 cf

Subcatchment 1S: Post-CB1
- Runoff Area: 5,213 sf
 - Impervious: 0.00%
 - Depth: 3.32"
- Flow Length: 50'
- Slope: 0.0120 '/'
- Tc: 6.5 min
- CN: 79
- Runoff: 0.46 cfs
 - Volume: 1,444 cf

Subcatchment 2S: Post-CB2
- Runoff Area: 420 sf
 - Impervious: 0.00%
 - Depth: 3.32"
- Flow Length: 50'
- Slope: 0.0120 '/'
- Tc: 6.5 min
- CN: 79
- Runoff: 0.04 cfs
 - Volume: 116 cf

Subcatchment 3S: Post-1
- Runoff Area: 18,392 sf
 - Impervious: 67.08%
 - Depth: 4.68"
- Flow Length: 50'
- Slope: 0.0120 '/'
- Tc: 6.5 min
- CN: 82
- Runoff: 2.14 cfs
 - Volume: 7,168 cf

Subcatchment 4S: Post-CB2
- Runoff Area: 6,022 sf
 - Impervious: 0.00%
 - Depth: 3.32"
- Flow Length: 50'
- Slope: 0.0120 '/'
- Tc: 6.5 min
- CN: 79
- Runoff: 0.53 cfs
 - Volume: 1,668 cf

Subcatchment 5S: Pre-CB1
- Runoff Area: 37,415 sf
 - Impervious: 22.82%
 - Depth: 3.72"
- Flow Length: 50'
- Slope: 0.0120 '/'
- Tc: 6.5 min
- CN: 79
- Runoff: 1.61 cfs
 - Volume: 5,326 cf

Subcatchment 6S: Pre-Street
- Runoff Area: 933 sf
 - Impervious: 0.00%
 - Depth: 3.32"
- Flow Length: 50'
- Slope: 0.0120 '/'
- Tc: 6.5 min
- CN: 83
- Runoff: 3.65 cfs
 - Volume: 11,604 cf

Reach 8R: ADS Pipe
- Avg. Flow Depth: 0.05'
- Max Vel: 3.02 fps
- Inflow: 1.13 cfs
 - Volume: 7,061 cf

Pond 0P: Post-Total
- Inflow: 1.13 cfs
 - Volume: 7,061 cf

Pond 1P: CB1
- Inflow: 0.49 cfs
 - Volume: 5,029 cf

Pond 2P: Pipe Storage
- Peak Elev: 87.47'
- Storage: 10,191 cf
- Inflow: 3.74 cfs
 - Volume: 12,092 cf

Pond 3P: Tank 1
- Peak Elev: 89.56'
- Storage: 10,191 cf
- 12.0" Round Culvert
 - n: 0.010
 - L: 15.0'
 - S: 0.0100 '/'
- Inflow: 2.14 cfs
 - Volume: 6,967 cf

Pond 5P: Tank 2
- Peak Elev: 89.40'
- Storage: 242 cf
- 12.0" Round Culvert
 - n: 0.010
 - L: 15.0'
 - S: 0.0100 '/'
- Inflow: 1.61 cfs
 - Volume: 5,326 cf

Pond 6P: Pre-Total
- Inflow: 4.26 cfs
 - Volume: 13,531 cf

Total Runoff Area = 88,742 sf
- Runoff Volume = 29,501 cf
- Average Runoff Depth = 3.99"
- 65.53% Pervious = 58,152 sf
- 34.47% Impervious = 30,590 sf
Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 0S: Post-Street
Runoff Area=6,350 sf 14.90% Impervious Runoff Depth=4.92"
Flow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=82 Runoff=0.81 cfs 2,601 cf

Subcatchment 1S: Post-CB1
Runoff Area=5,213 sf 0.00% Impervious Runoff Depth=4.58"
Flow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=79 Runoff=0.63 cfs 1,992 cf

Subcatchment 2S: Post-CB2
Runoff Area=420 sf 0.00% Impervious Runoff Depth=4.58"
Flow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=79 Runoff=0.05 cfs 160 cf

Subcatchment 3S: Post-1
Runoff Area=18,392 sf 67.08% Impervious Runoff Depth=6.05"
Flow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=92 Runoff=2.73 cfs 9,280 cf

Subcatchment 5S: Post-2
Runoff Area=13,997 sf 62.64% Impervious Runoff Depth=5.94"
Flow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=91 Runoff=2.06 cfs 6,927 cf

Subcatchment 6S: Pre-CB1
Runoff Area=6,022 sf 0.00% Impervious Runoff Depth=4.58"
Flow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=79 Runoff=0.72 cfs 2,301 cf

Subcatchment 7S: Pre-Street
Runoff Area=37,415 sf 22.82% Impervious Runoff Depth=5.03"
Flow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=83 Runoff=4.88 cfs 15,676 cf

Subcatchment 8S: Pre-CB2
Runoff Area=933 sf 0.00% Impervious Runoff Depth=4.58"
Flow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=79 Runoff=0.11 cfs 356 cf

Reach 8R: ADS Pipe
Avg. Flow Depth=0.13' Max Vel=5.16 fps Inflow=0.24 cfs 7,011 cf
8.0" Round Pipe n=0.012 L=27.0' S=0.0519 '/' Capacity=2.98 cfs Outflow=0.24 cfs 7,011 cf

Pond 0P: Post-Total
Inflow=1.52 cfs 11,764 cf
Primary=1.52 cfs 11,764 cf

Pond 1P: CB1
Inflow=0.66 cfs 9,002 cf
Primary=0.66 cfs 9,002 cf

Pond 2P: Pipe Storage
Peak Elev=87.78' Storage=11,177 cf
Inflow=4.78 cfs 15,805 cf
Outflow=0.24 cfs 7,011 cf

Pond 3P: Tank 1
Peak Elev=89.74' Storage=261 cf
12.0" Round Culvert n=0.010 L=15.0' S=0.0100 '/'
Inflow=2.73 cfs 9,280 cf
Outflow=2.73 cfs 9,079 cf

Pond 5P: Tank 2
Peak Elev=89.53' Storage=249 cf
12.0" Round Culvert n=0.010 L=15.0' S=0.0100 '/'
Inflow=2.06 cfs 6,927 cf
Outflow=2.06 cfs 6,726 cf

Pond 6P: Pre-Total
Inflow=5.72 cfs 18,333 cf
Primary=5.72 cfs 18,333 cf

Total Runoff Area = 88,742 sf Runoff Volume = 39,294 cf Average Runoff Depth = 5.31"
65.53% Pervious = 58,152 sf 34.47% Impervious = 30,590 sf
Summary for Reach 8R: ADS Pipe

Inflow Area = 32,389 sf, 65.16% Impervious, Inflow Depth > 0.95" for 2-Year event
Inflow = 0.03 cfs @ 20.63 hrs, Volume = 2,556 cf
Outflow = 0.03 cfs @ 20.64 hrs, Volume = 2,555 cf, Atten = 0%, Lag = 0.3 min

Routing by Stor-Ind+Trans method, Time Span = 0.00-36.00 hrs, dt = 0.01 hrs
Max. Velocity = 2.75 fps, Min. Travel Time = 0.2 min
Avg. Velocity = 2.64 fps, Avg. Travel Time = 0.2 min

Peak Storage = 0 cf @ 20.63 hrs
Average Depth at Peak Storage = 0.05'
Bank-Full Depth = 0.67' Flow Area = 0.3 sf, Capacity = 2.98 cfs

8.0" Round Pipe
n = 0.012 Corrugated PP, smooth interior
Length = 27.0' Slope = 0.0519 '/'
Inlet Invert = 85.00', Outlet Invert = 83.60'

Reach 8R: ADS Pipe

Hydrograph

Inflow Area = 32,389 sf
Avg. Flow Depth = 0.05'
Max Vel = 2.75 fps
8.0"
Round Pipe
n = 0.012
L = 27.0'
S = 0.0519 '/'
Capacity = 2.98 cfs
Summary for Pond 2P: Pipe Storage

Inflow Area = 32,389 sf, 65.16% Impervious, Inflow Depth = 2.35" for 2-Year event
Inflow = 2.09 cfs @ 12.10 hrs, Volume= 6,347 cf
Outflow = 0.03 cfs @ 20.63 hrs, Volume= 2,556 cf, Attenuation 99%, Lag 512.0 min
Primary = 0.03 cfs @ 20.63 hrs, Volume= 2,556 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 86.35' @ 20.63 hrs Surf.Area= 4,851 sf Storage= 5,060 cf

Plug-Flow detention time= 711.9 min calculated for 2,555 cf (40% of inflow)
Center-of-Mass det. time= 598.9 min (1,415.6 - 816.6)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>85.00'</td>
<td>11,133 cf</td>
<td>36.0" Round RCP_Round 36" x 7 L= 225.0'</td>
</tr>
<tr>
<td>#2</td>
<td>85.00'</td>
<td>250 cf</td>
<td>5.00'W x 10.00'L x 5.00'H Tank Housing</td>
</tr>
<tr>
<td>#3</td>
<td>85.00'</td>
<td>250 cf</td>
<td>5.00'W x 10.00'L x 5.00'H Tank Housing</td>
</tr>
<tr>
<td>#4</td>
<td>85.00'</td>
<td>250 cf</td>
<td>5.00'W x 10.00'L x 5.00'H Tank Housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,883 cf</td>
<td>Total Available Storage</td>
</tr>
</tbody>
</table>

Device Routing Invert Outlet Devices
#1 Primary 85.00' 1.0" Vert. Orifice/Grate C= 0.600
#2 Primary 87.50' 6.0" Vert. Orifice/Grate C= 0.600

Primary Outflow Max=0.03 cfs @ 20.63 hrs HW=86.35' (Free Discharge)
1=Orifice/Grate (Orifice Controls 0.03 cfs @ 5.51 fps)
2=Orifice/Grate (Controls 0.00 cfs)
Pond 2P: Pipe Storage

Inflow Area=32,389 sf
Peak Elev=86.35'
Storage=5,060 cf
Summary for Pond 3P: Tank 1

Inflow Area = 18,392 sf, 67.08% Impervious, Inflow Depth = 2.54" for 2-Year event

Inflow = 1.20 cfs @ 12.09 hrs, Volume= 3,895 cf
Outflow = 1.20 cfs @ 12.10 hrs, Volume= 3,694 cf, Atten= 0%, Lag= 0.3 min
Primary = 1.20 cfs @ 12.10 hrs, Volume= 3,694 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 89.28' @ 12.10 hrs Surf.Area= 55 sf Storage= 235 cf

Plug-Flow detention time= 45.8 min calculated for 3,693 cf (95% of inflow)
Center-of-Mass det. time= 17.2 min (813.2 - 796.1)

Volume Invert Avail.Storage Storage Description
#1 85.00' 293 cf 5.00'W x 11.00'L x 5.33'H 1500 Gal Tank

Device Routing Invert Outlet Devices
#1 Primary 88.65' 12.0" Round RCP_Round 12"
L= 15.0' RCP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900
n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.20 cfs @ 12.10 hrs HW=89.28' (Free Discharge)
1=RCP_Round 12" (Barrel Controls 1.20 cfs @ 3.32 fps)

Pond 3P: Tank 1

Hydrograph

Inflow Area=18,392 sf
Peak Elev=89.28'
Storage=235 cf
12.0"
Round Culvert
n=0.010
L=15.0'
S=0.0100 '/'
Summary for Pond 5P: Tank 2

Inflow Area = 13,997 sf, 62.64% Impervious, Inflow Depth = 2.45" for 2-Year event

Inflow = 0.89 cfs @ 12.09 hrs, Volume= 2,854 cf
Outflow = 0.89 cfs @ 12.10 hrs, Volume= 2,653 cf, Atten= 0%, Lag= 0.3 min
Primary = 0.89 cfs @ 12.10 hrs, Volume= 2,653 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 89.17' @ 12.10 hrs Surf.Area= 55 sf Storage= 229 cf

Plug-Flow detention time= 57.6 min calculated for 2,652 cf (93% of inflow)
Center-of-Mass det. time= 20.7 min (821.4 - 800.7)

Volume Invert Avail.Storage Storage Description
#1 85.00' 293 cf 5.00'W x 11.00'L x 5.33'H 1500 Gal Tank

Device Routing Invert Outlet Devices
#1 Primary 88.65' 12.0" Round RCP Round 12"
 L= 15.0’ RCP, square edge headwall, Ke= 0.500
 Inlet / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900
 n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.88 cfs @ 12.10 hrs HW=89.17' (Free Discharge)
1=RCP_Round 12" (Barrel Controls 0.88 cfs @ 3.12 fps)
Summary for Reach 8R: ADS Pipe

Inflow Area = 32,389 sf, 65.16% Impervious, Inflow Depth > 1.18" for 10-Year event

| Inflow | 0.04 cfs @ 22.20 hrs, Volume= 3,176 cf |
| Outflow | 0.04 cfs @ 22.20 hrs, Volume= 3,176 cf, Atten= 0%, Lag= 0.3 min |

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 2.92 fps, Min. Travel Time= 0.2 min
Avg. Velocity = 2.77 fps, Avg. Travel Time= 0.2 min

Peak Storage= 0 cf @ 22.20 hrs
Average Depth at Peak Storage= 0.05'
Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.98 cfs

8.0" Round Pipe
n= 0.012 Corrugated PP, smooth interior
Length= 27.0' Slope= 0.0519 '/'
Inlet Invert= 85.00', Outlet Invert= 83.60'

Reach 8R: ADS Pipe

- Inflow Area=32,389 sf
- Avg. Flow Depth=0.05'
- Max Vel=2.92 fps
- 8.0" Round Pipe
- n=0.012
- L=27.0'
- S=0.0519 '/'
- Capacity=2.98 cfs
Summary for Pond 2P: Pipe Storage

Inflow Area = 32,389 sf, 65.16% Impervious, Inflow Depth = 3.60" for 10-Year event
Inflow = 3.07 cfs @ 12.10 hrs, Volume= 9,723 cf
Outflow = 0.04 cfs @ 22.20 hrs, Volume= 3,176 cf, Atten= 99%, Lag= 606.2 min
Primary = 0.04 cfs @ 22.20 hrs, Volume= 3,176 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 86.97' @ 22.20 hrs Surf.Area= 4,633 sf Storage= 8,062 cf

Plug-Flow detention time= 727.5 min calculated for 3,176 cf (33% of inflow)
Center-of-Mass det. time= 602.3 min (1,404.5 - 802.2)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>85.00'</td>
<td>11,133 cf</td>
<td>36.0" Round RCP_Round 36" x 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L= 225.0'</td>
</tr>
<tr>
<td>#2</td>
<td>85.00'</td>
<td>250 cf</td>
<td>5.00'W x 10.00'L x 5.00'H Tank Housing</td>
</tr>
<tr>
<td>#3</td>
<td>85.00'</td>
<td>250 cf</td>
<td>5.00'W x 10.00'L x 5.00'H Tank Housing</td>
</tr>
<tr>
<td>#4</td>
<td>85.00'</td>
<td>250 cf</td>
<td>5.00'W x 10.00'L x 5.00'H Tank Housing</td>
</tr>
</tbody>
</table>

11,883 cf Total Available Storage

Device Routing Invert Outlet Devices

- #1 Primary 85.00' 1.0" Vert. Orifice/Grate C= 0.600
- #2 Primary 87.50' 6.0" Vert. Orifice/Grate C= 0.600

Primary OutFlow Max=0.04 cfs @ 22.20 hrs HW=86.97' (Free Discharge)
1=Orifice/Grate (Orifice Controls 0.04 cfs @ 6.69 fps)
2=Orifice/Grate (Controls 0.00 cfs)
Pond 2P: Pipe Storage

Inflow Area=32,389 sf
Peak Elev=86.97'
Storage=8,062 cf

Hydrograph

Flow (cfs)

Time (hours)
Summary for Pond 3P: Tank 1

Inflow Area = 18,392 sf, 67.08% Impervious, Inflow Depth = 3.80" for 10-Year event
Inflow = 1.76 cfs @ 12.09 hrs, Volume= 5,819 cf
Outflow = 1.76 cfs @ 12.10 hrs, Volume= 5,618 cf, Atten= 0%, Lag= 0.3 min
Primary = 1.76 cfs @ 12.10 hrs, Volume= 5,618 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 89.45' @ 12.10 hrs Surf.Area= 55 sf Storage= 245 cf

Plug-Flow detention time= 34.5 min calculated for 5,618 cf (97% of inflow)
Center-of-Mass det. time= 14.1 min (799.2 - 785.1)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>85.00'</td>
<td>293 cf</td>
<td>5.00'W x 11.00'L x 5.33'H 1500 Gal Tank</td>
</tr>
</tbody>
</table>

Device Routing Invert Outlet Devices
#1 Primary 88.65' 12.0" Round RCP Round 12"
L= 15.0' RCP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900
n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.75 cfs @ 12.10 hrs HW=89.45' (Free Discharge)
1=RCP Round 12" (Barrel Controls 1.75 cfs @ 3.59 fps)

Pond 3P: Tank 1

Hydrograph
Summary for Pond 5P: Tank 2

Inflow Area = 13,997 sf, 62.64% Impervious, Inflow Depth = 3.69" for 10-Year event
Inflow = 1.31 cfs @ 12.09 hrs, Volume= 4,306 cf
Outflow = 1.31 cfs @ 12.10 hrs, Volume= 4,105 cf, Atten= 0%, Lag= 0.3 min
Primary = 1.31 cfs @ 12.10 hrs, Volume= 4,105 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 89.31' @ 12.10 hrs Surf.Area= 55 sf Storage= 237 cf

Plug-Flow detention time= 43.5 min calculated for 4,105 cf (95% of inflow)
Center-of-Mass det. time= 17.0 min (806.3 - 789.4)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>85.00'</td>
<td>293 cf</td>
<td>5.00'W x 11.00'L x 5.33'H 1500 Gal Tank</td>
</tr>
</tbody>
</table>

Device Routing Invert Outlet Devices
#1 Primary 88.65' 12.0" Round RCP_Round 12"
L= 15.0' RCP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900
n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.31 cfs @ 12.10 hrs HW=89.31' (Free Discharge)
→1=RCP_Round 12" (Barrel Controls 1.31 cfs @ 3.38 fps)
Summary for Reach 8R: ADS Pipe

Inflow Area = 32,389 sf, 65.16% Impervious, Inflow Depth > 1.33" for 25-Year event
Inflow = 0.04 cfs @ 22.82 hrs, Volume= 3,585 cf
Outflow = 0.04 cfs @ 22.83 hrs, Volume= 3,585 cf, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 3.02 fps, Min. Travel Time= 0.1 min
Avg. Velocity = 2.84 fps, Avg. Travel Time= 0.2 min

Peak Storage= 0 cf @ 22.83 hrs
Average Depth at Peak Storage= 0.05'
Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.98 cfs

8.0" Round Pipe
n= 0.012 Corrugated PP, smooth interior
Length= 27.0' Slope= 0.0519 '/'
Inlet Invert= 85.00', Outlet Invert= 83.60'

Reach 8R: ADS Pipe

Inflow Area=32,389 sf
Avg. Flow Depth=0.05'
Max Vel=3.02 fps
8.0"
Round Pipe
n=0.012
L=27.0'
S=0.0519 '/'
Capacity=2.98 cfs
Summary for Pond 2P: Pipe Storage

Inflow Area = 32,389 sf, 65.16% Impervious, Inflow Depth = 4.48" for 25-Year event
Inflow = 3.74 cfs @ 12.10 hrs, Volume= 12,092 cf
Outflow = 0.04 cfs @ 22.82 hrs, Volume= 3,585 cf, Atten= 99%, Lag= 643.8 min
Primary = 0.04 cfs @ 22.82 hrs, Volume= 3,585 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 87.47' @ 22.82 hrs Surf.Area= 3,744 sf Storage= 10,191 cf

Plug-Flow detention time= 738.5 min calculated for 3,584 cf (30% of inflow)
Center-of-Mass det. time= 602.9 min (1,398.0 - 795.1)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>85.00'</td>
<td>11,133 cf</td>
<td>36.0" Round RCP_Round 36" x 7 L= 225.0'</td>
</tr>
<tr>
<td>#2</td>
<td>85.00'</td>
<td>250 cf</td>
<td>5.00'W x 10.00'L x 5.00'H Tank Housing</td>
</tr>
<tr>
<td>#3</td>
<td>85.00'</td>
<td>250 cf</td>
<td>5.00'W x 10.00'L x 5.00'H Tank Housing</td>
</tr>
<tr>
<td>#4</td>
<td>85.00'</td>
<td>250 cf</td>
<td>5.00'W x 10.00'L x 5.00'H Tank Housing</td>
</tr>
</tbody>
</table>

11,883 cf Total Available Storage

<table>
<thead>
<tr>
<th>Device</th>
<th>Routing</th>
<th>Invert</th>
<th>Outlet Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Primary</td>
<td>85.00'</td>
<td>1.0" Vert. Orifice/Grate C= 0.600</td>
</tr>
<tr>
<td>#2</td>
<td>Primary</td>
<td>87.50'</td>
<td>6.0" Vert. Orifice/Grate C= 0.600</td>
</tr>
</tbody>
</table>

Primary OutFlow Max=0.04 cfs @ 22.82 hrs HW=87.47' (Free Discharge)
1=Orifice/Grate (Orifice Controls 0.04 cfs @ 7.51 fps)
2=Orifice/Grate (Controls 0.00 cfs)
Inflow Area = 32,389 sf
Peak Elev = 87.47'
Storage = 10,191 cf
Summary for Pond 3P: Tank 1

Inflow Area = 18,392 sf, 67.08% Impervious, Inflow Depth = 4.68" for 25-Year event
Inflow = 2.14 cfs @ 12.09 hrs, Volume = 7,168 cf
Outflow = 2.14 cfs @ 12.10 hrs, Volume = 6,967 cf, Atten= 0%, Lag= 0.3 min
Primary = 2.14 cfs @ 12.10 hrs, Volume = 6,967 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 89.56' @ 12.10 hrs
Surf.Area= 55 sf
Storage= 251 cf

Plug-Flow detention time= 29.6 min calculated for 6,967 cf (97% of inflow)
Center-of-Mass det. time= 12.6 min (792.3 - 779.7

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 85.00'</td>
<td>293 cf</td>
<td>5.00'W x 11.00'L x 5.33'H</td>
<td>1500 Gal Tank</td>
</tr>
</tbody>
</table>

Device Routing Invert Outlet Devices
#1 Primary 88.65' 12.0" Round RCP_Round 12"
L= 15.0' RCP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900
n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.14 cfs @ 12.10 hrs HW=89.56' (Free Discharge)
RCP_Round 12" (Barrel Controls 2.14 cfs @ 3.75 fps)
Summary for Pond 5P: Tank 2

Inflow Area = 13,997 sf, 62.64% Impervious, Inflow Depth = 4.57” for 25-Year event

Inflow = 1.61 cfs @ 12.09 hrs, Volume= 5,326 cf
Outflow = 1.60 cfs @ 12.10 hrs, Volume= 5,125 cf, Atten= 0%, Lag= 0.3 min
Primary = 1.60 cfs @ 12.10 hrs, Volume= 5,125 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 89.40' @ 12.10 hrs Surf.Area= 55 sf Storage= 242 cf
Plug-Flow detention time= 37.4 min calculated for 5,125 cf (96% of inflow)
Center-of-Mass det. time= 15.3 min (799.0 - 783.7)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>85.00'</td>
<td>293 cf</td>
<td>5.00’W x 11.00’L x 5.33’H 1500 Gal Tank</td>
</tr>
</tbody>
</table>

Device Routing Invert Outlet Devices

#1 Primary 88.65' 12.0" Round RCP_Round 12"
L= 15.0’ RCP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900
n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.60 cfs @ 12.10 hrs HW=89.40' (Free Discharge)
1=RCP_Round 12" (Barrel Controls 1.60 cfs @ 3.52 fps)

Pond 5P: Tank 2

Hydrograph

Inflow Area=13,997 sf
Peak Elev=89.40'
Storage=242 cf
12.0"
Round Culvert
n=0.010
L=15.0'
S=0.0100 '/'

Flow (cfs)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Time (hours)
Summary for Reach 8R: ADS Pipe

Inflow Area = 32,389 sf, 65.16% Impervious, Inflow Depth > 2.60" for 100-Year event
Inflow = 0.24 cfs @ 14.23 hrs, Volume= 7,011 cf
Outflow = 0.24 cfs @ 14.24 hrs, Volume= 7,011 cf, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 5.16 fps, Min. Travel Time= 0.1 min
Avg. Velocity = 3.25 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 14.23 hrs
Average Depth at Peak Storage= 0.13'
Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.98 cfs

8.0" Round Pipe
n= 0.012 Corrugated PP, smooth interior
Length= 27.0' Slope= 0.0519 '/'
Inlet Invert= 85.00', Outlet Invert= 83.60'

Reach 8R: ADS Pipe

Hydrograph

Inflow Area=32,389 sf
Avg. Flow Depth=0.13'
Max Vel=5.16 fps
8.0"
Round Pipe
n=0.012
L=27.0'
S=0.0519 '/'
Capacity=2.98 cfs
Summary for Pond 2P: Pipe Storage

Inflow Area = 32,389 sf, 65.16% Impervious, Inflow Depth = 5.86" for 100-Year event
Inflow = 4.78 cfs @ 12.10 hrs, Volume= 15,805 cf
Outflow = 0.24 cfs @ 14.23 hrs, Volume= 7,011 cf, Atten= 95%, Lag= 128.3 min
Primary = 0.24 cfs @ 14.23 hrs, Volume= 7,011 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 87.78' @ 14.23 hrs Surf.Area= 2,626 sf Storage= 11,177 cf

Plug-Flow detention time= 527.4 min calculated for 7,010 cf (44% of inflow)
Center-of-Mass det. time= 410.1 min (1,196.8 - 786.7)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>85.00'</td>
<td>11,133 cf</td>
<td>36.0" Round RCP_Round 36" x 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L= 225.0'</td>
</tr>
<tr>
<td>#2</td>
<td>85.00'</td>
<td>250 cf</td>
<td>5.00'W x 10.00'L x 5.00'H Tank Housing</td>
</tr>
<tr>
<td>#3</td>
<td>85.00'</td>
<td>250 cf</td>
<td>5.00'W x 10.00'L x 5.00'H Tank Housing</td>
</tr>
<tr>
<td>#4</td>
<td>85.00'</td>
<td>250 cf</td>
<td>5.00'W x 10.00'L x 5.00'H Tank Housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11,883 cf Total Available Storage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Routing</th>
<th>Invert</th>
<th>Outlet Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Primary</td>
<td>85.00'</td>
<td>1.0" Vert. Orifice/Grate C= 0.600</td>
</tr>
<tr>
<td>#2</td>
<td>Primary</td>
<td>87.50'</td>
<td>6.0" Vert. Orifice/Grate C= 0.600</td>
</tr>
</tbody>
</table>

Primary OutFlow Max=0.24 cfs @ 14.23 hrs HW=87.78’ (Free Discharge)
1=Orifice/Grate (Orifice Controls 0.04 cfs @ 7.96 fps)
2=Orifice/Grate (Orifice Controls 0.20 cfs @ 1.79 fps)
Pond 2P: Pipe Storage

Hydrograph

Inflow Area=32,389 sf
Peak Elev=87.78'
Storage=11,177 cf
Summary for Pond 3P: Tank 1

Inflow Area = 18,392 sf, 67.08% Impervious, Inflow Depth = 6.05" for 100-Year event
Inflow = 2.73 cfs @ 12.09 hrs, Volume= 9,280 cf
Outflow = 2.73 cfs @ 12.10 hrs, Volume= 9,079 cf, Atten= 0%, Lag= 0.3 min
Primary = 2.73 cfs @ 12.10 hrs, Volume= 9,079 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 89.74' @ 12.10 hrs Surf.Area= 55 sf Storage= 261 cf
Plug-Flow detention time= 24.4 min calculated for 9,077 cf (98% of inflow)
Center-of-Mass det. time= 10.9 min (784.1 - 773.2)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>85.00'</td>
<td>293 cf</td>
<td>5.00'W x 11.00'L x 5.33'H 1500 Gal Tank</td>
</tr>
</tbody>
</table>

Device Routing Invert Outlet Devices
#1 Primary 88.65' 12.0" Round RCP Round 12"
L= 15.0’ RCP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900
n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.73 cfs @ 12.10 hrs HW=89.74' (Free Discharge)
1=RCP_Round 12" (Barrel Controls 2.73 cfs @ 3.98 fps)

Pond 3P: Tank 1

Hydrograph

Inflow Area=18,392 sf
Peak Elev=89.74'
Storage=261 cf
12.0"
Round Culvert
n=0.010
L=15.0'
S=0.0100 '/'
Summary for Pond 5P: Tank 2

Inflow Area = 13,997 sf, 62.64% Impervious, Inflow Depth = 5.94" for 100-Year event
Inflow = 2.06 cfs @ 12.09 hrs, Volume= 6,927 cf
Outflow = 2.06 cfs @ 12.09 hrs, Volume= 6,726 cf, Atten= 0%, Lag= 0.3 min
Primary = 2.06 cfs @ 12.09 hrs, Volume= 6,726 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 89.53' @ 12.09 hrs Surf.Area= 55 sf Storage= 249 cf
Plug-Flow detention time= 30.9 min calculated for 6,724 cf (97% of inflow)
Center-of-Mass det. time= 13.3 min (790.2 - 776.9)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>85.00'</td>
<td>293 cf</td>
<td>5.00'W x 11.00'L x 5.33'H 1500 Gal Tank</td>
</tr>
</tbody>
</table>

Device Routing Invert Outlet Devices
#1 Primary 88.65' 12.0'' Round RCP_Round 12''
L= 15.0'' RCP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900
n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.05 cfs @ 12.09 hrs HW=89.53' (Free Discharge)
1=RCP_Round 12'' (Barrel Controls 2.05 cfs @ 3.72 fps)

Pond 5P: Tank 2

Hydrograph

Inflow Area=13,997 sf
Peak Elev=89.53'
Storage=249 cf
12.0'' Round Culvert
n=0.010
L=15.0'
S=0.0100 '/'
Section II
Stormwater Management
♦ **STANDARD #1 No New Stormwater Conveyances**
The proposed development proposes no new stormwater conveyances that discharge untreated stormwater off-site or cause down gradient erosion.

♦ **STANDARD #2 Post Development Peak Discharge**
The overall site analysis demonstrates that the stormwater management system has been designed so that the post-development peak discharge rates do not exceed the pre-development discharge rate for the 2yr, 10 yr, 25yr & 100 yr 24 hr storm events.

♦ **STANDARD #3 RECHARGE TO GROUNDWATER**
High groundwater and poor soils restrict the feasibility of onsite infiltration of stormwater. This project is for the redevelopment of an existing dwelling and proposes to reduce peak flows from the 2, 10, 25, and 100 year storm events.

♦ **STANDARD #4 WATER QUALITY**
High groundwater and poor soils restrict the feasibility of onsite infiltration of stormwater. This project is for the redevelopment of an existing dwelling and proposes to reduce peak flows from the 2, 10, 25, and 100 year storm events.

♦ **TSS REMOVAL** (see TSS Removal Work Sheet)
TSS Removal Calculation Worksheet

Instructions

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
2. Select BMP from Drop Down Menu
3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Table

<table>
<thead>
<tr>
<th>Location</th>
<th>BMP</th>
<th>Load (D-E)</th>
<th>Remaining Amount (C-D)</th>
<th>Rate</th>
<th>TSS Removed</th>
<th>Total TSS Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Sump and Hooded Catch Basin</td>
<td>0.75</td>
<td>0.25</td>
<td>0.56</td>
<td>0.00</td>
<td>0.56</td>
<td>44%</td>
</tr>
<tr>
<td>Oil Separator</td>
<td>0.25</td>
<td>0.75</td>
<td>0.19</td>
<td>0.56</td>
<td>0.00</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Total TSS Removal = 44%

Note: Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed. 1. From MassDEP Stormwater Handbook Vol. 1. 2. Select BMP from Drop Down Menu. 3. After BMP is selected, TSS Removal and other Columns are automatically completed.
STANDARD #5 Land Uses With Higher Potential Pollutant Loads
The site and use is not a LUHPPL.

STANDARD #6 Critical Areas
The site is not located near an Outstanding Resource Water Resource.

STANDARD #7 Redevelopment
This project is a redevelopment project.

STANDARD #8 Erosion & Sediment Control Plan
Erosion and sediment controls are detailed within the site plan.

STANDARD #9 Operation & Maintenance Plan
See O&M plan attached hereto.

STANDARD #10 Illicit Discharge Statement
“All illicit discharges to the stormwater management system are prohibited.”

This statement is intended to meet Standard #10 of the Stormwater Management requirements.

Illicit discharges to the stormwater management system are discharges that are not entirely comprised of stormwater.

Except for the potential for deliberate criminal act of discharge by an unauthorized entity for which the property owner has no control, there are to be no illicit discharges into the stormwater system.

[Signature]
Applicant/Owner
Section III

Operation & Maintenance
OPERATION AND MAINTENANCE PLAN

PROPOSED SITE WORK – DURING CONSTRUCTION

420 Washington Street, Assessors Map E12-31
Pembroke, Massachusetts

Owner:
Champion Builders Inc.
P.O. Box #1414
Duxbury, MA 02331
Contact: (781) 585-4114 Email: mdacey@championbuilders.com

Party Responsible for Operation and Maintenance:
Champion Builders Inc.
P.O. Box #1414
Duxbury, MA 02331
Contact: (781) 585-4114 Email: mdacey@championbuilders.com

Source of Funding:
Operation and Maintenance of this stormwater management system will be the responsibility of the property owner to include its successor and/or assigns, as the same may appear on record with the appropriate register of deeds.

During Construction:
Construction activities shall follow the Construction Sequence shown on the approved plans. During periods of active construction the stormwater management system shall be inspected on a weekly basis and within 24 hours of a storm event of greater than ½”. Maintenance tasks shall be performed monthly or after significant rainfall events of 1” of rain or greater. During construction, silt-laden runoff shall be prevented from entering the drainage system and off-site properties. Temporary swales shall be constructed as needed during construction to direct runoff to sediment traps. Infiltration systems and subsurface storage systems shall not be placed in service until after the installation of base course pavement and vegetative stabilization of the areas contributing to the systems.

During dewatering operations, all water pumped from the dewatering shall be directed to a “dirt bag” pumped sediment removal system (or approved equal) as manufactured by ACF Environmental. Water from construction dewatering activities should not be directed into any of the existing or proposed stormwater management facilities system unless it is fully treated prior to discharge. The unit shall be placed on a crushed stone blanket. Disposal of such “dirt bag” shall occur when the device is full and can no longer effectively filter sediment or allow water to pass at a reasonable flow rate. Disposal of this unit shall be the responsibility of the contractor and shall be as directed by the owner in accordance with applicable local, state, and federal guidelines and regulations.

All erosion and sedimentation control measures shall be in place prior to the commencement of any site work or earthwork operations, and shall be maintained during construction, and shall remain in place until all site work is complete and ground cover is established.

All exposed soils not to be paved shall be stabilized as soon as practical. Seed mixes shall only be applied during appropriate periods as recommended by the seed supplier, typically May 1 to October 15. Any exposed soils that cannot be stabilized by vegetation during these dates shall be stabilized with hay bales, hay mulch, check dams, jute netting or other acceptable means.
Once each structure is in place, it should be maintained in accordance with the procedures described in the post-construction Operations and Maintenance Plan.

During dry periods where dust is created by construction activities the following control measures should be implemented.

- **Sprinkling** – The contractor may sprinkle the ground along haul roads and traffic areas until moist.
- **Vegetative cover** – Areas that are not expected to be disturbed regularly may be stabilized with vegetative cover.
- **Mulch** – Mulching can be used as a quick and effective means of dust control in recently disturbed areas.
- **Spray on chemical soil treatments** may be utilized. Application rates shall conform to manufacturers recommendations.

Illicit Discharges

Illicit discharges to the stormwater management system are discharges that are not entirely comprised of stormwater. Illicit discharges are prohibited from the stormwater management system and the stormwater management system shall be inspected for illicit discharges annually.

STORMWATER MANAGEMENT

BEST MANAGEMENT PRACTICES

INSPECTION SCHEDULE AND EVALUATION CHECKLIST – CONSTRUCTION PHASE

PROJECT LOCATION: 345 Oak Street, Pembroke

Latest Revision: May 30, 2019

<table>
<thead>
<tr>
<th>Stormwater Control Manager: ____</th>
<th>Stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Management Practice</td>
<td>Inspection Frequency (1)</td>
</tr>
<tr>
<td>Silt socks & swales and silt traps</td>
<td>After every major storm event</td>
</tr>
<tr>
<td>Dewatering Operations</td>
<td>Daily-during actual dewatering</td>
</tr>
<tr>
<td>Temporary Construction Entrance</td>
<td>Daily or as needed.</td>
</tr>
</tbody>
</table>

(1) Refer to the Massachusetts Stormwater Management, Volume Two: Stormwater Technical Handbook for recommendations regarding frequency for inspection and maintenance of specific BMPs.

Limited or no use of sodium chloride salts, fertilizers or pesticides recommended. Slow release fertilizer recommended.

Other notes: (Include deviations from: Con Com Order of Conditions, PB Approval, Construction Sequence and Approved Plan)
OPERATION AND MAINTENANCE PLAN
PROPOSED DRAINAGE SYSTEM – POST CONSTRUCTION
420 Washington Street, Assessors Map E12-31
Pembroke, Massachusetts

Owner:
Champion Builders Inc.
P.O. Box #1414
Duxbury, MA 02331
Contact: (781) 585-4114 Email: mdacey@championbuilders.com

Party Responsible for Operation and Maintenance:
After construction is complete the owner will be the party responsible for operation and maintenance of the drainage system. When the property is conveyed, the new owner will be the party responsible for operation and maintenance.

Source of Funding:
Operation and Maintenance of this stormwater management system will be the responsibility of the owner.

Schedule for Inspection and Maintenance:
Outlet Structure
After construction, the outlet structure should be inspected at least once per year to ensure that the system is operating as intended. If accumulated sediment is observed within the structure it should be removed as necessary. Any sediment removed should be disposed of in accordance with Town, State and Federal Regulations.

The 1” diameter orifice should be kept clear of debris, and should be inspected quarterly to ensure no blockage exists. Standing water in the storage pipes is an indicator of such a blockage.

Illicit Discharges
Illicit discharges to the stormwater management system are discharges that are not entirely comprised of stormwater. Illicit discharges are prohibited from the stormwater management system and the stormwater management system shall be inspected for illicit discharges annually.

This Standard prohibits illicit discharges to stormwater management systems. The stormwater management system is the system for conveying, treating, and infiltrating stormwater on-site, including stormwater best management practices and any pipes intended to transport stormwater to the groundwater, a surface water, or municipal separate storm sewer system. Illicit discharges to the stormwater management system are discharges that are not entirely comprised of stormwater. Notwithstanding the foregoing, an illicit discharge does not include discharges from the following activities or facilities: firefighting, water line flushing, landscape irrigation, uncontaminated groundwater, potable water sources, foundation drains, air conditioning condensation, footing drains, individual resident car washing, flows from riparian habitats and wetlands, dechlorinated water from swimming pools, water used for street washing and water used to clean residential buildings without detergents.

For additional information, refer to Performance Standards and Guidelines for Stormwater Management in Massachusetts, published by the Department of Environmental Protection.
STORMWATER MANAGEMENT
BEST MANAGEMENT PRACTICES

INSPECTION SCHEDULE AND EVALUATION CHECKLIST – POST CONSTRUCTION PHASE

PROJECT LOCATION: 345 Oak Street, Pembroke
Latest Revision January 23, 2019

<table>
<thead>
<tr>
<th>Best Management Practice</th>
<th>Inspection Frequency (1)</th>
<th>Date Inspected</th>
<th>Inspector</th>
<th>Minimum Maintenance and Key Items to Check</th>
<th>Cleaning/Repair Needed yes/no</th>
<th>List items</th>
<th>Date of Cleaning/Repair</th>
<th>Performed By</th>
<th>Water Level in Drainage System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet Structure</td>
<td>Once per year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Refer to the Massachusetts Stormwater Management, Volume Two: Stormwater Technical Handbook for recommendations regarding frequency for inspection and maintenance of specific BMPs.

(2) Records shall be kept for a minimum of three years.

Limited or no use of sodium chloride salts, fertilizers or pesticides recommended. Slow release fertilizer recommended.

Other notes: (Include deviations from: Con Com Order of Conditions, PB Approval, Construction Sequence and Approved Plan)

Stormwater Control Manager: _______
Stamp
Custom Soil Resource Report for Plymouth County, Massachusetts

January 24, 2019
Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>2</td>
</tr>
<tr>
<td>How Soil Surveys Are Made</td>
<td>5</td>
</tr>
<tr>
<td>Soil Map</td>
<td>8</td>
</tr>
<tr>
<td>Soil Map</td>
<td>9</td>
</tr>
<tr>
<td>Legend</td>
<td>10</td>
</tr>
<tr>
<td>Map Unit Legend</td>
<td>11</td>
</tr>
<tr>
<td>Map Unit Descriptions</td>
<td>11</td>
</tr>
<tr>
<td>Plymouth County, Massachusetts</td>
<td>13</td>
</tr>
<tr>
<td>636B—Montauk-Urban land complex, 0 to 8 percent slopes</td>
<td>13</td>
</tr>
<tr>
<td>References</td>
<td>15</td>
</tr>
</tbody>
</table>
How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and
identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.
Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.
The soil surveys that comprise your AOI were mapped at
1:12,000.

If soil polygon data are shown on these maps, as a result, some minor
inaccuracies may be evident. Imagery displays on these maps, as a result, some minor
complexity and detail have been removed from the background
composites of other base maps on which the soil lines were
The soils shown on these maps are labeled for map scales
1:12,000 or larger.

Soil map units are labeled (as space allows) for map scales
1:24,000 or larger.

Special Point Features

Soil Spot
Sandy Spot
Clay Spot
Closed Depression
Gravel Pit
Gravelly Spot
Landfill
Lava Flow
Marsh or swamp
Mine or Quarry
Miscellaneous Water
Perennial Water
Non-Perennial Water
Mining or Quarry
Non-Miner
cial Water
Perennial Water
Non-Perennial Water

Special Line Features

Water Features

Stream and Canal

Transportation

Roads

Rails

Major Roads

US Routes

Interstate Highways

Streams and Canals

Special Point Features

Wet Spot
Sandy Spot
Gravelly Spot
Very Stony Spot
Stony Spot
Soil Spot
Area of Interest (AOI)
Map Unit Legend

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>636B</td>
<td>Montauk-Urban land complex, 0 to 8 percent slopes</td>
<td>1.6</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>Totals for Area of Interest</td>
<td>1.6</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class.

Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils. Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.
An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.
Plymouth County, Massachusetts

636B—Montauk-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

- **National map unit symbol:** 2w7zx
- **Elevation:** 0 to 230 feet
- **Mean annual precipitation:** 36 to 71 inches
- **Mean annual air temperature:** 39 to 55 degrees F
- **Frost-free period:** 145 to 240 days
- **Farmland classification:** Not prime farmland

Map Unit Composition

- **Montauk and similar soils:** 50 percent
- **Urban land:** 40 percent
- **Minor components:** 10 percent
- *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Montauk

Setting

- **Landform:** Hills, ground moraines, recessional moraines, drumlins
- **Landform position (two-dimensional):** Backslope, shoulder, summit
- **Landform position (three-dimensional):** Side slope, crest
- **Down-slope shape:** Linear, convex
- **Across-slope shape:** Convex
- **Parent material:** Coarse-loamy over sandy lodgment till derived from gneiss, granite, and/or schist

Typical profile

- **Ap - 0 to 4 inches:** fine sandy loam
- **Bw1 - 4 to 26 inches:** fine sandy loam
- **Bw2 - 26 to 34 inches:** sandy loam
- **2Cd - 34 to 72 inches:** gravelly loamy sand

Properties and qualities

- **Slope:** 0 to 8 percent
- **Depth to restrictive feature:** 20 to 39 inches to densic material
- **Natural drainage class:** Well drained
- **Runoff class:** Medium
- **Capacity of the most limiting layer to transmit water (Ksat):** Very low to moderately high (0.00 to 1.42 in/hr)
- **Depth to water table:** About 18 to 37 inches
- **Frequency of flooding:** None
- **Frequency of ponding:** None
- **Salinity, maximum in profile:** Nonsaline (0.0 to 1.9 mmhos/cm)
- **Available water storage in profile:** Low (about 5.2 inches)

Interpretive groups

- **Land capability classification (irrigated):** None specified
- **Land capability classification (nonirrigated):** 2e
- **Hydrologic Soil Group:** C
- **Hydric soil rating:** No
Description of Urban Land

Typical profile

M - 0 to 10 inches: cemented material

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: 0 inches to manufactured layer
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Available water storage in profile: Very low (about 0.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 8
Hydrologic Soil Group: D
Hydric soil rating: Unranked

Minor Components

Scituate

Percent of map unit: 5 percent
Landform: Drumlins, hills, ground moraines
Landform position (two-dimensional): Summit, footslope, backslope
Landform position (three-dimensional): Crest, side slope
Down-slope shape: Linear, convex
Across-slope shape: Convex
Hydric soil rating: No

Udorthents, loamy

Percent of map unit: 5 percent
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Hydric soil rating: No
References

Custom Soil Resource Report

Commonwealth of Massachusetts
Massachusetts

Soil Suitability Assessment for On-site Sewage Disposal

Performed by: Brendan Kling
GRADY CONSULTING, L.L.C.
71 Evergreen Street, Suite 1
Kingston, MA 02364
Phone: (781) 585-2300 Fax: (781) 585-2378

Date: 1/29/19

Witnessed by: LISA CULLITY
*Owner's Name
STEVE TOMASI
*Address &
*Telephone #

Location Address or Lot #
345 OAK ST
PEMBROOK, MA

New Construction ✓ Repair __

Office Review
Published Soil Survey Available: No X Yes__
Year Published: __________ Publication Scale: __________ Soil Map Unit: __________
Drainage Class: __________ Soil Limitations: __________

Published Soil Survey Available: No X Yes__
Year Published: __________ Publication Scale: __________
Geologic Material (Map Unit): __________
Landform: __________

Flood Insurance Rate Map:
Above 500 year flood boundary: No ___ Yes X
Within 500 year flood boundary No X Yes ___
Within 100 year flood boundary No X Yes ___

Wetland Area:
National Wetland Inventory Map (map unit): __________
Wetlands Conservancy Program Map (map unit): __________

Current Water Resource Conditions (USGS):
Range: Above Normal ✓ Normal ___ Below Normal ___
Month: JANUARY

Other References Reviewed: __________

Depth of Naturally Occurring Pervious Material
Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

If not, what is the depth of naturally occurring pervious material?

Certification
I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise, and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated on the attached soil evaluation form, are accurate and in accordance with CMR 15.180 through 15.107.

Signature: __________
Date: 3/20/19
Deep Observation Hole Log

<table>
<thead>
<tr>
<th>Depth From Surface (Inches)</th>
<th>Soil Horizon (USDA)</th>
<th>Soil Texture (Munsell)</th>
<th>Soil Color</th>
<th>Soil Mottling</th>
<th>Other: Structures, Stones, Boulders, Consistency, % Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0'-18'</td>
<td>Fill</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18'-36</td>
<td>B</td>
<td>Silty Loam 10 YR 5/6</td>
<td>-</td>
<td>-</td>
<td>Some coarse sand</td>
</tr>
<tr>
<td>36'-108</td>
<td>C</td>
<td>Silty Loam 10 YR 6/2</td>
<td>48''</td>
<td>Tight, 10% stones</td>
<td>Pockets of sandy loam</td>
</tr>
</tbody>
</table>

Parent Material (geologic)

Depth to Bedrock

Depth to Groundwater: Standing Water in Hole: Weeping from Pit Face: 74''
Estimated Seasonal High Groundwater: 48''

Determination for Seasonal High Water Table

Method Used:
- Depth observed standing in observation hole: 48 inches
- Depth to soil mottles: 48 inches
- Depth to weeping from side of observation hole: 48 inches
- Groundwater correction: 48 inches

Index Well: Reading Date: Index well level: Adj. factor: Adj. Groundwater level:

Percolation Test

<table>
<thead>
<tr>
<th>Observation Hole #</th>
<th>Date</th>
<th>Time at 9''</th>
<th>Time at 6''</th>
<th>Time (9''-6'')</th>
<th>Rate Min/Inch</th>
</tr>
</thead>
</table>

Site Suitability Assessment: Site Passed Site Failed Additional Testing Needed:

Performed By: [Brendan Kling]
Witnessed By: [Lisa Cullity]
Comments:
TITLE 5 ON-SITE REVIEW

Deep Hole # _______ Date _______ Time _______ Weather _______

Location (identify on Site Plan) ___________

Land Use _______ Vegetation _______ Slope(%) _______ Surface Stones _______

Landform _______

Distances from: Open Water Body _______ ft. Possible Wet Area _______ ft. Drinking Water Well _______ ft.

Drainageway _______ ft. Propertyline _______ ft. Other _______

DEEP OBSERVATION HOLE LOG

Depth From Surface Soil Horizon Soil Texture Soil Color Soil Matting Other: Structures, Stones, Boulders, Consistency, %Gravel
(Inches) (USDA Munsell) _______

0'-18'' Fill _______

18'-50'' B loam 10yr 5/6 _______

50'-120'' C sandy loam 10yr 6/2 60' 15% stones _______

Parent Material (geologic) _______

Depth to Bedrock _______

Depth to Groundwater: Standing Water in Hole: _______ Weeping from Pit Face _______

Estimated Seasonal High Groundwater _______

DETERMINATION FOR SEASONAL HIGH WATER TABLE

Method Used: _______

□ Depth observed standing in observation hole: _______ inches □ Depth to soil mottles: _______ inches
□ Depth to weeping from side of observation hole: _______ inches □ Groundwater adjustment _______ ft

Index Well # _______ Reading Date _______ Index well level _______ Adj. factor _______ Adj. Groundwater level _______

PERCOLATION TEST

Observation Hole # _______ Date _______ Time _______

Depth of Perc _______ Time at 9'' _______

Start Presoak _______ Time at 6'' _______

End Presoak _______ Rate Min/Inch _______

Site Suitability Assessment: Site Passed _______ Site Failed _______ Additional Testing Needed: _______

Performed By _______ Witnessed By _______

Comments: Percolation Test _______

10.75'' @ 12:30
TITLE 5 ON-SITE REVIEW

Deep Hole #: 3 Date: 1/29 Time: 9:30 Weather: 30°

Location (identify on Site Plan): #3

Land Use: Slope(%) 1-3 Surface Stones:

Vegetation: 55 Landform:

Drainageway: ___ ft. Propertyline: 10-15 ft. Other:

DEEP OBSERVATION HOLE LOG

Depth From Surface (Inches) Soil Horizon (USDA) Soil Texture (Munsell) Soil Color Soil Mottling Other: Structures, Stones, Boulders, Consistency, %Gravel

0-50” Fill 10YR5/1

50-78” C 7.5YR 6/4 50”

Parent Material (geologic): Depth to Bedrock:

Depth to Groundwater: Standing Water in Hole: 72” Weeping from Pit Face: 55” Estimated Seasonal High Groundwater: 50”

DETERMINATION FOR SEASONAL HIGH WATER TABLE

Method Used:

Depth observed standing in observation hole: ___ inches ✔ Depth to soil mottles: 50 inches

Depth to weeping from side of observation hole: ___ inches Groundwater adjustment: ___ ft

Index Well #: ___ Reading Date: ___ Index well level: ___ Adj.factor: ___ Adj.Groundwater level: ___

PERCOLATION TEST

Date: Time at 9”

Time at 6”

Time (9”-6”)

Rate Min/Inch

Site Suitability Assessment: Site Passed: Site Failed: Additional Testing Needed:

Performed By: Brendan King Certification #:

Witnessed By: Lisa Cullity

Comments:
Title 5 On-Site Review

Deep Hole # 4

Date 1/29

Time 11:30

Weather 30°

Location (identify on Site Plan)

Land Use: Slope (%): 2-8

Surface Stones:

Vegetation:

Landform:

Distances from:
- Open Water Body: ft.
- Possible Wet Area: ft.
- Drinking Water Well: ft.
- Drainageway: ft.
- Property Line: 10-15 ft.
- Other:

Deep Observation Hole Log

<table>
<thead>
<tr>
<th>Depth From Surface (Inches)</th>
<th>Soil Horizon (USDA)</th>
<th>Soil Texture (Munsell)</th>
<th>Soil Color</th>
<th>Soil Mottling</th>
<th>Other: Structures, Stones, Boulders, Consistency, % Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-18</td>
<td>Fill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18"-42"</td>
<td></td>
<td>B Sandy Loam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42-60</td>
<td></td>
<td>C Sandy Loam</td>
<td>48"</td>
<td>15% Stones</td>
<td></td>
</tr>
</tbody>
</table>

Parent Material (geologic)

Depth to Bedrock

Depth to Groundwater:
- Standing Water in Hole: 54"
- Weeping from Pit Face
- Estimated Seasonal High Groundwater: 48"

Determination for Seasonal High Water Table

<table>
<thead>
<tr>
<th>Method Used:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth observed standing in observation hole: 48"</td>
</tr>
<tr>
<td>Depth to soil mottles: 48"</td>
</tr>
<tr>
<td>Depth to weeping from side of observation hole: 48"</td>
</tr>
<tr>
<td>Groundwater adjustment: ft</td>
</tr>
<tr>
<td>Index Well #</td>
</tr>
<tr>
<td>Reading Date</td>
</tr>
<tr>
<td>Index well level</td>
</tr>
<tr>
<td>Adj. factor</td>
</tr>
<tr>
<td>Adj. Groundwater level</td>
</tr>
</tbody>
</table>

Percolation Test

<table>
<thead>
<tr>
<th>Observation Hole #</th>
<th>Time at 9"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth of Perc</td>
<td>Time at 6"</td>
</tr>
<tr>
<td>Start Presoak</td>
<td>Time (9"-6")</td>
</tr>
<tr>
<td>End Presoak</td>
<td>Rate Min/Inch</td>
</tr>
</tbody>
</table>

Site Suitability Assessment:
- Site Passed
- Site Failed
- Additional Testing Needed:

Performed By: Brendan King

Witnessed By:

Comments:
Title 5 On-Site Review

Deep Hole # 5 Date 1/29 Time 11:45 Weather 30°

Location (Identify on Site Plan)
Land Use Slope(%) 3-8 Surface Stones
Vegetation Landform

Distances from: Open Water Body ft. Possible Wet Area ft. Drinking Water Well ft.
Drainageway ft. Property line 20 ft. Other

Deep Observation Hole Log

Depth From Surface Soil Horizon Soil Texture Soil Color Soil Mottling Other: Structures, Stones, Boulders, Consistency, % Gravel
(Inches) (USDA) (Munsell)
0-18 Fill
18-36 B
36-66 C Sandy loam

Parent Material (geologic) Depth to Bedrock
Depth to Groundwater: Standing Water in Hole: Weeping from Pit Face 48”
Estimated Seasonal High Groundwater 40”

Determination for Seasonal High Water Table

Method Used:
Depth observed standing in observation hole: inches Depth to soil mottles: inches
Depth to weeping from side of observation hole: inches Groundwater adjustment ft
Index Well # Reading Date Index well level Adj.factor Adj. Groundwater level

Percolation Test

Observation Hole # Date Time at 9”
Depth of Perc Time at 6”
Start Presoak Time (9”-6”)
End Presoak Rate Min/Inch

Site Suitability Assessment: Site Passed Site Failed Additional Testing Needed:
Performed By: Brendan Uling
Witnessed By:
Comments:
TITLE 5 ON-SITE REVIEW

- **Deep Hole #**: 6
- **Date**: 1/29
- **Time**: 12:00
- **Weather**: 31°

Location (identify on Site Plan)
- Land Use: Grass
- Slope (%): 1-3
- Surface Stones: —
- Vegetation: Tall Brush / Thorns
- Landform: —

Distances from:
- Open Water Body: ___ ft.
- Possible Wet Area: ___ ft.
- Drinking Water Well: ___ ft.
- Drainageway: ___ ft.
- Propertyline: ___ ft.
- Other: —

DEEP OBSERVATION HOLE LOG

<table>
<thead>
<tr>
<th>Depth From Surface (Inches)</th>
<th>Soil Horizon (USDA)</th>
<th>Soil Texture (Munsell)</th>
<th>Soil Color</th>
<th>Soil Mottling</th>
<th>Other: Structures, Stones, Boulders, Consistency, % Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0" - 42"</td>
<td>Fill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42" - 60"</td>
<td>C</td>
<td>Sandy Loam</td>
<td>48"</td>
<td>20% Stones</td>
<td>Some Boulders</td>
</tr>
</tbody>
</table>

Parent Material (geologic)

- **Depth to Bedrock**: __________
- **Depth to Groundwater**: __________
- **Standing Water in Hole**: __________
- **Weeping from Pit Face**: __________
- **Estimated Seasonal High Groundwater**: __________

DETERMINATION FOR SEASONAL HIGH WATER TABLE

- **Method Used**:
 - Depth observed standing in observation hole: ___ inches
 - Depth to soil mottles: ___ inches
 - Depth to weeping from side of observation hole: ___ inches
 - Groundwater adjustment: ___ ft
- **Index Well #**
- **Reading Date**
- **Index well level**
- **Adj. factor**
- **Adj. Groundwater level**

PERCOLATION TEST

- **Observation Hole #**: __________
- **Time at 9"**: __________
- **Depth of Perc**: __________
- **Time at 6"**: __________
- **Start Presoak**: __________
- **Time (9" - 6")**: __________
- **End Presoak**: __________
- **Rate Min/Inch**: __________

Site Suitability Assessment
- **Site Passed**: __________
- **Site Failed**: __________
- **Additional Testing Needed**: __________

Performed By
- **Brendan Utting**

Witnessed By
- __________

Comments:

- **Certification #**: __________
TITLE 5 ON-SITE REVIEW

Deep Hole # 7
Date 3-20-19
Time 8:30 AM
Weather Sunny - 45°

Location (Identify on Site Plan) __________
Land Use _______
Slope(%) _______
Surface Stones _______
Vegetation _______
Landform _______

Distances from:
Open Water Body _______ ft.
Possible Wet Area _______ ft.
Drainageway _______ ft.
Propertyline _______ ft.
Other _______

DEEP OBSERVATION HOLE LOG

<table>
<thead>
<tr>
<th>Depth From Surface (Inches)</th>
<th>Soil Horizon (USDA)</th>
<th>Soil Texture (Munsell)</th>
<th>Soil Color</th>
<th>Soil Mottling</th>
<th>Other: Structures, Stones, Boulders, Consistency, %Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-18</td>
<td>A</td>
<td>Fill 7.5YR 3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-48</td>
<td>B</td>
<td>SILTY LOAM 7.5YR 4/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-84</td>
<td>C1</td>
<td>SILTY LOAM 7.5R 5/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84-150</td>
<td>C2</td>
<td>SANDY LOAM 7.5YR 6/2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parent Material (geologic)
Depth to Bedrock _______

Depth to Groundwater:
Standing Water in Hole: _______
Weeping from Pit Face _______
Estimated Seasonal High Groundwater _______

DETERMINATION FOR SEASONAL HIGH WATER TABLE

Method Used:
- Depth observed standing in observation hole: _______ inches
- Depth to soil mottles: _______ inches
- Depth to weeping from side of observation hole: _______ inches
- Groundwater adjustment _______ ft

Index Well # _______
Reading Date _______
Index well level _______
Adj.factor _______
Adj.Groundwater level _______

PERCOLATION TEST

<table>
<thead>
<tr>
<th>Observation Hole #</th>
<th>Date</th>
<th>Time at 9"</th>
<th>Time at 6"</th>
<th>Time (9"-6")</th>
<th>Rate Min/Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>10:41</td>
<td>11:40</td>
<td>59 min</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>9:17</td>
<td>57 min</td>
<td>60 min</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Site Suitability Assessment:
- Site Passed _______
- Site Failed _______
- Additional Testing Needed: _______

Performed By: BRENDA KLING
Witnessed By: LISA CULLITY

Comments:
BACK FILLED WITH PERL SAND