

STORMWATER MANAGEMENT DESIGN CALCULATIONS

345 Oak Street Assessors Map F15-38 Pembroke, Massachusetts

Prepared for

Champion Builders Inc. P.O. Box #1414 Duxbury, MA 02331

May 30, 2019

Table of Contents

Table of Contents Summary Peak Rate Summary		2 3 3
Overall Site Analysis	Section I	4
HydroCad Report		5-32
Stormwater Compliance Standards 1-10	Section II	33 34-36
Operation and Maintenance Plan During Construction Post Construction	Section III	37 38-39 40-41
NRCS Custom Soils Report		42-57
Soil Logs Site Plan & Tributary Area Plans Pre	e & Post	Attached Attached

SUMMARY

The project is the redevelopment of an existing building at 345 Oak Street, Pembroke. The new development will include the construction of a 2,400 S.F. office building with 33 parking spaces, and a 4 car garage.

Stormwater on site is managed through the use of 7-225' long x 36'' diameter polyethylene pipes that fully store the 2, 10, and 25 year storm flow and slowly release the water into the nearby drop inlet. High groundwater and poor soils restrict the feasibility of onsite infiltration of stormwater. A 1'' diameter orifice at the bottom of the weir placed inside of the proposed outlet structure controls the flow, with a 6'' diameter orifice acting as the emergency overflow. Calculations show peak flow rates post construction to be lower for the 2, 10, 25, and 100 year storms.

This analysis was prepared to demonstrate Compliance with the Massachusetts Stormwater Management Regulations and the Town of Pembroke Rules and Regulations for Stormwater Management.

This analysis is divided into the following sections:

Section I	Overall Site Analysis
Section II	Compliance with Massachusetts Storm water Management Regulations
Section III	Operation And Maintenance Plan

The calculations have been performed for the 2, 10, 25, 100-year 24 hour storm event, using the HydroCAD computer program. This computer program is based upon the Soils Conservation Service (SCS) TR-20 and TR-55 computer models and uses the SCS Curvilinear Unit rainfall distribution.

Peak Rate Summary

The following summary details a reduction in Peak Rate runoff. Values are in cubic feet per second.

	2 YEAR		10 YEAR		25 YEAR		100 YEAR	
	PRE	POST	PRE	POST	PRE	POST	PRE	POST
CB1	0.23	0.22	0.41	0.38	0.53	0.49	0.72	0.66
CB2	0.04	0.02	0.06	0.03	0.08	0.04	0.11	0.05
STREET	1.76	0.29	2.87	0.47	3.65	0.60	4.88	0.81
TOTAL	2.03	0.53	3.33	0.88	4.26	1.13	5.72	1.52

Section I Overall Site Analysis

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
58,152	79	50-75% Grass cover, Fair, HSG C (0S, 1S, 2S, 3S, 5S, 6S, 7S, 8S)
24,001	98	Paved parking, HSG C (0S, 3S, 5S, 7S)
4,946	98	Roofs, HSG C (3S, 5S, 7S)
1,643	98	Unconnected pavement, HSG C (3S, 5S, 7S)
88,742	86	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
0	HSG A	
0	HSG B	
88,742	HSG C	0S, 1S, 2S, 3S, 5S, 6S, 7S, 8S
0	HSG D	
0	Other	
88,742		TOTAL AREA

345 Oak Drainage

Prepared by Grady	Consultir	ng, LLC	
HydroCAD® 10.00-21	s/n 09955	© 2018 HydroCAD Software Solutions LLC	

Printed 5/29/2019 Page 4

			-	-			
HSG-A (sɑ-ft)	HSG-B (sg-ft)	HSG-C (sq-ft)	HSG-D (sɑ-ft)	Other (sg-ft)	Total (sq-ft)	Ground Cover	Sul Nu
 (((- 4 - 4)	((50.450	50 75 ⁰ / Oreas	
U	0	58,152	U	U	58,152	cover, Fair	
0	0	24,001	0	0	24,001	Paved parking	
0	0	4,946	0	0	4,946	Roofs	
0	0	1,643	0	0	1,643	Unconnected	
						pavement	
0	0	88,742	0	0	88,742	TOTAL AREA	

Ground Covers (all nodes)

Subcatchment0S: Post-Street	t Runoff Area=6,350 sf 14.90% Impervious Runoff Depth=1.70" Flow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=82 Runoff=0.29 cfs 900 cf
Subcatchment1S: Post-CB1	Runoff Area=5,213 sf 0.00% Impervious Runoff Depth=1.49" Flow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=79 Runoff=0.20 cfs 647 cf
Subcatchment2S: Post-CB2	Runoff Area=420 sf 0.00% Impervious Runoff Depth=1.49" Flow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=79 Runoff=0.02 cfs 52 cf
Subcatchment 3S: Post-1 Flo	Runoff Area=18,392 sf 67.08% Impervious Runoff Depth=2.54" ow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=92 Runoff=1.20 cfs 3,895 cf
Subcatchment 5S: Post-2 Flo	Runoff Area=13,997 sf 62.64% Impervious Runoff Depth=2.45" ow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=91 Runoff=0.89 cfs 2,854 cf
Subcatchment 6S: Pre-CB1	Runoff Area=6,022 sf 0.00% Impervious Runoff Depth=1.49" Flow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=79 Runoff=0.23 cfs 747 cf
Subcatchment7S: Pre-Street	Runoff Area=37,415 sf 22.82% Impervious Runoff Depth=1.77" ow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=83 Runoff=1.76 cfs 5,534 cf
Subcatchment8S: Pre-CB2	Runoff Area=933 sf 0.00% Impervious Runoff Depth=1.49" Flow Length=50' Slope=0.0120 '/' Tc=6.5 min CN=79 Runoff=0.04 cfs 116 cf
Reach 8R: ADS Pipe 8.0" Round Pipe	Avg. Flow Depth=0.05' Max Vel=2.75 fps Inflow=0.03 cfs 2,556 cf n=0.012 L=27.0' S=0.0519 '/' Capacity=2.98 cfs Outflow=0.03 cfs 2,555 cf
Pond 0P: Post-Total	Inflow=0.53 cfs 4,154 cf Primary=0.53 cfs 4,154 cf
Pond 1P: CB1	Inflow=0.22 cfs 3,202 cf Primary=0.22 cfs 3,202 cf
Pond 2P: Pipe Storage	Peak Elev=86.35' Storage=5,060 cf Inflow=2.09 cfs 6,347 cf Outflow=0.03 cfs 2,556 cf
Pond 3P: Tank 1	Peak Elev=89.28' Storage=235 cf Inflow=1.20 cfs 3,895 cf 12.0" Round Culvert n=0.010 L=15.0' S=0.0100 '/' Outflow=1.20 cfs 3,694 cf
Pond 5P: Tank 2	Peak Elev=89.17' Storage=229 cf Inflow=0.89 cfs 2,854 cf 12.0" Round Culvert n=0.010 L=15.0' S=0.0100 '/' Outflow=0.89 cfs 2,653 cf
Pond 6P: Pre-Total	Inflow=2.03 cfs 6,396 cf Primary=2.03 cfs 6,396 cf

Total Runoff Area = 88,742 sf Runoff Volume = 14,743 cf Average Runoff Depth = 1.99"65.53% Pervious = 58,152 sf 34.47% Impervious = 30,590 sf

345 Oak Drainage	Туре
Prepared by Grady Consulting, LLC	
HvdroCAD® 10.00-21 s/n 09955 © 2018 HvdroCAD Softwa	are Solutions LLC

Subcatchment0S: Post-Street	t ow Length=50'	Runoff Area=6, Slope=0.0120 '/'	350 sf 14.90 ⁰ Tc=6.5 min	% Impervious CN=82 Run	Runoff De off=0.47 cf	epth=2.81" s 1,488 cf
Subcatchment1S: Post-CB1 Flo	ow Length=50'	Runoff Area=5 Slope=0.0120 '/'	,213 sf 0.00 ⁶ Tc=6.5 min	% Impervious CN=79 Run	Runoff De off=0.35 cf	epth=2.55" s 1,106 cf
Subcatchment2S: Post-CB2	Flow Length=5	Runoff Area: 60' Slope=0.0120	=420 sf 0.00 ⁰) '/' Tc=6.5 m	% Impervious iin CN=79 F	Runoff De Runoff=0.03	epth=2.55" 3 cfs 89 cf
Subcatchment 3S: Post-1 Flo	ow Length=50'	Runoff Area=18, Slope=0.0120 '/'	392 sf 67.08 Tc=6.5 min	% Impervious CN=92 Run	Runoff De off=1.76 cf	epth=3.80" s 5,819 cf
Subcatchment 5S: Post-2 Flo	ow Length=50'	Runoff Area=13,9 Slope=0.0120 '/'	997 sf 62.64 Tc=6.5 min	% Impervious CN=91 Run	Runoff De off=1.31 cf	epth=3.69" s 4,306 cf
Subcatchment 6S: Pre-CB1 Flo	ow Length=50'	Runoff Area=6 Slope=0.0120 '/'	0.000 sf 0.000 Tc=6.5 min	% Impervious CN=79 Run	Runoff De off=0.41 cf	epth=2.55" s 1,277 cf
Subcatchment7S: Pre-Street	ow Length=50'	Runoff Area=37, Slope=0.0120 '/'	415 sf 22.82 ^o Tc=6.5 min	% Impervious CN=83 Run	Runoff De off=2.87 cf	epth=2.90" s 9,054 cf
Subcatchment8S: Pre-CB2	Flow Length=50	Runoff Area: Slope=0.0120	=933 sf 0.00' '/' Tc=6.5 miı	% Impervious n CN=79 Rt	Runoff De unoff=0.06	epth=2.55" cfs 198 cf
Reach 8R: ADS Pipe 8.0" Round Pipe	Av n=0.012 L=2	rg. Flow Depth=0. 27.0' S=0.0519 '/	05' Max Vel= ″ Capacity=2	=2.92 fps Infl 2.98 cfs Outfl	ow=0.04 cf ow=0.04 cf	s 3,176 cf s 3,176 cf
Pond 0P: Post-Total				Infl Prima	ow=0.88 cf ary=0.88 cf	s 5,859 cf s 5,859 cf
Pond 1P: CB1				Infl Prima	ow=0.38 cf ary=0.38 cf	s 4,281 cf s 4,281 cf
Pond 2P: Pipe Storage		Peak Elev=86	6.97' Storage=	=8,062 cf Infl Outfl	ow=3.07 cf ow=0.04 cf	s 9,723 cf s 3,176 cf
Pond 3P: Tank 1	12.0" Round (Peak Elev=a Culvert_n=0.010	89.45' Storag L=15.0' S=0.0	e=245 cf Infl 0100 '/' Outfl	ow=1.76 cf ow=1.76 cf	s 5,819 cf s 5,618 cf
Pond 5P: Tank 2	12.0" Round (Peak Elev=a Culvert_n=0.010	89.31' Storag L=15.0' S=0.0	e=237 cf Infl 0100 '/' Outfl	ow=1.31 cf ow=1.31 cf	s 4,306 cf s 4,105 cf
Pond 6P: Pre-Total				Inflo Primai	w=3.33 cfs y=3.33 cfs	10,530 cf 10,530 cf

Total Runoff Area = 88,742 sf Runoff Volume = 23,337 cf Average Runoff Depth = 3.16" 65.53% Pervious = 58,152 sf 34.47% Impervious = 30,590 sf

345 Oak Drainage	Туре
Prepared by Grady Consulting, LLC	
HvdroCAD® 10.00-21 s/n 09955 © 2018 HvdroCAD Software S	olutions LLC

Subcatchment0S: Post-Street	:	Runoff Area=6,	350 sf 14.90 ⁰	% Impervious	Runoff Dep	oth=3.62"
	w Length=50'	Slope=0.0120 '/'	Tc=6.5 min	CN=82 Rur	noff=0.60 cfs	1,916 cf
Subcatchment1S: Post-CB1	w Length=50'	Runoff Area=5	5,213 sf 0.00 ⁰	% Impervious	Runoff Dep	oth=3.32"
Flo		Slope=0.0120 '/'	Tc=6.5 min	CN=79 Rur	noff=0.46 cfs	1,444 cf
Subcatchment 2S: Post-CB2	Flow Length=50	Runoff Area Slope=0.0120	=420 sf 0.00' '/' Tc=6.5 miı	% Impervious n CN=79 R	Runoff Dep unoff=0.04 c	oth=3.32" fs 116 cf
Subcatchment 3S: Post-1	w Length=50'	Runoff Area=18,	392 sf 67.08 ⁰	% Impervious	Runoff Dep	oth=4.68"
Flo		Slope=0.0120 '/'	Tc=6.5 min	CN=92 Rur	noff=2.14 cfs	7,168 cf
Subcatchment 5S: Post-2	w Length=50'	Runoff Area=13,	997 sf 62.64 ⁰	% Impervious	Runoff Dep	oth=4.57"
Flo		Slope=0.0120 '/'	Tc=6.5 min	CN=91 Rur	noff=1.61 cfs	5,326 cf
Subcatchment 6S: Pre-CB1	w Length=50'	Runoff Area=6	5,022 sf 0.00 ⁶	% Impervious	Runoff Dep	oth=3.32"
Flo		Slope=0.0120 '/'	Tc=6.5 min	CN=79 Rur	noff=0.53 cfs	1,668 cf
Subcatchment7S: Pre-Street	v Length=50'	Runoff Area=37,	415 sf 22.82 ⁶	% Impervious	Runoff Dep	oth=3.72"
Flow		Slope=0.0120 '/'	Tc=6.5 min (CN=83 Runo	off=3.65 cfs	11,604 cf
Subcatchment 8S: Pre-CB2	Flow Length=50	Runoff Area	=933 sf 0.00 ⁴	% Impervious	Runoff Dep	oth=3.32"
F		Slope=0.0120	'/' Tc=6.5 mir	n CN=79 R	unoff=0.08 c	fs 258 cf
Reach 8R: ADS Pipe	Av	g. Flow Depth=0.	05' Max Vel=	3.02 fps Inf	ow=0.04 cfs	3,585 cf
8.0" Round Pipe	n=0.012 L=2	27.0' S=0.0519 '	″ Capacity=2	.98 cfs Outf	ow=0.04 cfs	3,585 cf
Pond 0P: Post-Total				Inf Prim	low=1.13 cfs ary=1.13 cfs	7,061 cf 7,061 cf
Pond 1P: CB1				Inf Prim	low=0.49 cfs ary=0.49 cfs	5,029 cf 5,029 cf
Pond 2P: Pipe Storage		Peak Elev=87.4	7' Storage=10),191 cf Inflo Outf	w=3.74 cfs low=0.04 cfs	12,092 cf 3,585 cf
Pond 3P: Tank 1	12.0" Round (Peak Elev= Culvert n=0.010	89.56' Storag L=15.0' S=0.0	e=251 cf Inf 0100 '/' Outf	low=2.14 cfs low=2.14 cfs	7,168 cf 6,967 cf
Pond 5P: Tank 2	12.0" Round (Peak Elev= Culvert n=0.010	89.40' Storag L=15.0' S=0.0	e=242 cf Inf 0100 '/' Outf	low=1.61 cfs low=1.60 cfs	5,326 cf 5,125 cf
Pond 6P: Pre-Total				Inflc Prima	w=4.26 cfs ry=4.26 cfs	13,531 cf 13,531 cf

Total Runoff Area = 88,742 sf Runoff Volume = 29,501 cf Average Runoff Depth = 3.99" 65.53% Pervious = 58,152 sf 34.47% Impervious = 30,590 sf

345 Oak Drainage	Type III :
Prepared by Grady Consulting, LLC	
HvdroCAD® 10.00-21 s/n 09955 © 2018 HvdroCAD Software	Solutions LLC

Subcatchment0S: Post-Street	t ow Length=50'	Runoff Area=6, Slope=0.0120 '/'	350 sf 14.90 Tc=6.5 min	% Impervious CN=82 Ru	s Runoff De noff=0.81 cf	epth=4.92" s 2,601 cf
Subcatchment1S: Post-CB1 Flo	ow Length=50'	Runoff Area=5 Slope=0.0120 '/'	5,213 sf 0.00 Tc=6.5 min	% Impervious CN=79 Ru	s Runoff De noff=0.63 cfs	epth=4.58" s 1,992 cf
Subcatchment2S: Post-CB2	Flow Length=50	Runoff Area Slope=0.0120	=420 sf 0.00 '/' Tc=6.5 mi	% Impervious n CN=79 F	s Runoff De Runoff=0.05	epth=4.58" cfs 160 cf
Subcatchment 3S: Post-1 Flo	ow Length=50'	Runoff Area=18, Slope=0.0120 '/'	392 sf 67.08 Tc=6.5 min	% Impervious CN=92 Ru	s Runoff De noff=2.73 cfs	epth=6.05" s 9,280 cf
Subcatchment 5S: Post-2 Flo	ow Length=50'	Runoff Area=13, Slope=0.0120 '/'	997 sf 62.64 Tc=6.5 min	% Impervious CN=91 Ru	s Runoff De noff=2.06 cfs	epth=5.94" s 6,927 cf
Subcatchment 6S: Pre-CB1 Flo	ow Length=50'	Runoff Area=6 Slope=0.0120 '/'	6,022 sf 0.00 Tc=6.5 min	% Impervious CN=79 Ru	s Runoff De noff=0.72 cfs	epth=4.58" s 2,301 cf
Subcatchment7S: Pre-Street Flow	v Length=50'	Runoff Area=37, Slope=0.0120 '/'	415 sf 22.82 Tc=6.5 min	% Impervious CN=83 Run	s Runoff De off=4.88 cfs	epth=5.03" 15,676 cf
Subcatchment 8S: Pre-CB2	Flow Length=50	Runoff Area Slope=0.0120	=933 sf 0.00 '/' Tc=6.5 mi	% Impervious n CN=79 F	s Runoff De Runoff=0.11	epth=4.58" cfs 356 cf
Reach 8R: ADS Pipe 8.0" Round Pipe	Av n=0.012 L=2	g. Flow Depth=0. 27.0' S=0.0519 '	.13' Max Vel /' Capacity=2	=5.16 fps In 2.98 cfs Out	flow=0.24 cfs flow=0.24 cfs	s 7,011 cf s 7,011 cf
Pond 0P: Post-Total				Infl Prima	ow=1.52 cfs ary=1.52 cfs	11,764 cf 11,764 cf
Pond 1P: CB1				In Prin	flow=0.66 cf nary=0.66 cf	s 9,002 cf s 9,002 cf
Pond 2P: Pipe Storage		Peak Elev=87.7	8' Storage=1	1,177 cf Infl Out	ow=4.78 cfs flow=0.24 cf	15,805 cf s 7,011 cf
Pond 3P: Tank 1	12.0" Round (Peak Elev= Culvert n=0.010	89.74' Storag L=15.0' S=0.	je=261 cf In 0100 '/' Out	flow=2.73 cf flow=2.73 cf	s 9,280 cf s 9,079 cf
Pond 5P: Tank 2	12.0" Round (Peak Elev= Culvert n=0.010	89.53' Storag L=15.0' S=0.	je=249 cf In 0100 '/' Out	flow=2.06 cf flow=2.06 cf	s 6,927 cf s 6,726 cf
Pond 6P: Pre-Total				Infl Prima	ow=5.72 cfs ary=5.72 cfs	18,333 cf 18,333 cf

Total Runoff Area = 88,742 sf Runoff Volume = 39,294 cf Average Runoff Depth = 5.31" 65.53% Pervious = 58,152 sf 34.47% Impervious = 30,590 sf

Summary for Reach 8R: ADS Pipe

 Inflow Area =
 32,389 sf, 65.16% Impervious, Inflow Depth > 0.95" for 2-Year event

 Inflow =
 0.03 cfs @ 20.63 hrs, Volume=
 2,556 cf

 Outflow =
 0.03 cfs @ 20.64 hrs, Volume=
 2,555 cf, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Max. Velocity= 2.75 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.64 fps, Avg. Travel Time= 0.2 min

Peak Storage= 0 cf @ 20.63 hrs Average Depth at Peak Storage= 0.05' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.98 cfs

8.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 27.0' Slope= 0.0519 '/' Inlet Invert= 85.00', Outlet Invert= 83.60'

Hydrograph Inflow Outflow 0.03 cfs 0.032 0.03 cfs Inflow Area=32,389 sf 0.03 Avg. Flow Depth=0.05 0.028 Max Vel=2.75 fps 0.026 8.0" 0.024 0.022 **Round Pipe** 0.02 n=0.012 (**j**) 0.018 L=27.0' Flow 0.016 S=0.0519 '/' 0.014 Capacity=2.98 c 0.012 0.01 0.008-0.006 0.004 0.002 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Reach 8R: ADS Pipe

Summary for Pond 2P: Pipe Storage

Inflow Area	=	32,389 sf,	65.16% Im	pervious,	Inflow Depth =	2.35"	for 2-Ye	ear event
Inflow	=	2.09 cfs @	12.10 hrs,	Volume=	6,347 c	f		
Outflow	=	0.03 cfs @	20.63 hrs,	Volume=	2,556 c	f, Atten	= 99%,	Lag= 512.0 min
Primary	=	0.03 cfs @	20.63 hrs,	Volume=	2,556 c	f		

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 86.35' @ 20.63 hrs Surf.Area= 4,851 sf Storage= 5,060 cf

Plug-Flow detention time= 711.9 min calculated for 2,555 cf (40% of inflow) Center-of-Mass det. time= 598.9 min (1,415.6 - 816.6)

Volume	Invert	Avail.Storage	Storage Description
#1	85.00'	11,133 cf	36.0" Round RCP_Round 36" × 7
			L= 225.0'
#2	85.00'	250 cf	5.00'W x 10.00'L x 5.00'H Tank Housing
#3	85.00'	250 cf	5.00'W x 10.00'L x 5.00'H Tank Housing
#4	85.00'	250 cf	5.00'W x 10.00'L x 5.00'H Tank Housing
		11,883 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices	
#1	Primary	85.00'	1.0" Vert. Orifice/Grate	C= 0.600
#2	Primary	87.50'	6.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.03 cfs @ 20.63 hrs HW=86.35' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 0.03 cfs @ 5.51 fps)

2=Orifice/Grate (Controls 0.00 cfs)

345 Oak DrainageTypePrepared by Grady Consulting, LLCHydroCAD® 10.00-21s/n 09955© 2018 HydroCAD Software Solutions LLC

Pond 2P: Pipe Storage

Summary for Pond 3P: Tank 1

Inflow Area =	18,392 sf, 67.08% Impervious,	Inflow Depth = 2.54" for 2-Year event
Inflow =	1.20 cfs @ 12.09 hrs, Volume=	3,895 cf
Outflow =	1.20 cfs @ 12.10 hrs, Volume=	3,694 cf, Atten= 0%, Lag= 0.3 min
Primary =	1.20 cfs @ 12.10 hrs, Volume=	3,694 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 89.28' @ 12.10 hrs Surf.Area= 55 sf Storage= 235 cf

Plug-Flow detention time= 45.8 min calculated for 3,693 cf (95% of inflow) Center-of-Mass det. time= 17.2 min (813.2 - 796.1)

Volume	Invert	Avail.Stora	rage Storage Description	
#1	85.00'	293	93 cf 5.00'W x 11.00'L x 5.33'H 1500 Gal Tank	
Device	Routing	Invert	Outlet Devices	_
#1	Primary	88.65'	12.0" Round RCP_Round 12" L= 15.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=1.20 cfs @ 12.10 hrs HW=89.28' (Free Discharge) -1=RCP_Round 12" (Barrel Controls 1.20 cfs @ 3.32 fps)

Pond 3P: Tank 1

Summary for Pond 5P: Tank 2

Inflow Area	=	13,997 sf,	62.64% Impervious,	Inflow Depth = 2.4	45" for 2-Year event
Inflow	=	0.89 cfs @	12.09 hrs, Volume=	2,854 cf	
Outflow	=	0.89 cfs @	12.10 hrs, Volume=	2,653 cf,	Atten= 0%, Lag= 0.3 min
Primary	=	0.89 cfs @	12.10 hrs, Volume=	2,653 cf	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 89.17' @ 12.10 hrs Surf.Area= 55 sf Storage= 229 cf

Plug-Flow detention time= 57.6 min calculated for 2,652 cf (93% of inflow) Center-of-Mass det. time= 20.7 min (821.4 - 800.7)

Volume	Invert	Avail.Stora	age	Storage Description
#1	85.00'	29	3 cf	5.00'W x 11.00'L x 5.33'H 1500 Gal Tank
Device	Routing	Invert	Outlet	t Devices
#1	Primary	88.65'	12.0" L= 15 Inlet / n= 0.0	Round RCP_Round 12" 5.0' RCP, square edge headwall, Ke= 0.500 Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900 D10 PVC, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.88 cfs @ 12.10 hrs HW=89.17' (Free Discharge) -1=RCP_Round 12" (Barrel Controls 0.88 cfs @ 3.12 fps)

Pond 5P: Tank 2

Summary for Reach 8R: ADS Pipe

 Inflow Area =
 32,389 sf, 65.16% Impervious, Inflow Depth > 1.18" for 10-Year event

 Inflow =
 0.04 cfs @ 22.20 hrs, Volume=
 3,176 cf

 Outflow =
 0.04 cfs @ 22.20 hrs, Volume=
 3,176 cf, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Max. Velocity= 2.92 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.77 fps, Avg. Travel Time= 0.2 min

Peak Storage= 0 cf @ 22.20 hrs Average Depth at Peak Storage= 0.05' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.98 cfs

8.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 27.0' Slope= 0.0519 '/' Inlet Invert= 85.00', Outlet Invert= 83.60'

Reach 8R: ADS Pipe

Summary for Pond 2P: Pipe Storage

Inflow Area	=	32,389 sf,	65.16% Impervious	, Inflow Depth =	3.60"	for 10-`	Year event
Inflow	=	3.07 cfs @	12.10 hrs, Volume=	9,723 c	f		
Outflow	=	0.04 cfs @	22.20 hrs, Volume=	3,176 c	f, Atter	ı= 99%,	Lag= 606.2 min
Primary	=	0.04 cfs @	22.20 hrs, Volume=	3,176 c	f		

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 86.97' @ 22.20 hrs Surf.Area= 4,633 sf Storage= 8,062 cf

Plug-Flow detention time= 727.5 min calculated for 3,176 cf (33% of inflow) Center-of-Mass det. time= 602.3 min (1,404.5 - 802.2)

Volume	Invert	Avail.Storage	Storage Description
#1	85.00'	11,133 cf	36.0" Round RCP_Round 36" x 7
			L= 225.0'
#2	85.00'	250 cf	5.00'W x 10.00'L x 5.00'H Tank Housing
#3	85.00'	250 cf	5.00'W x 10.00'L x 5.00'H Tank Housing
#4	85.00'	250 cf	5.00'W x 10.00'L x 5.00'H Tank Housing
		11,883 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices	
#1	Primary	85.00'	1.0" Vert. Orifice/Grate	C= 0.600
#2	Primary	87.50'	6.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.04 cfs @ 22.20 hrs HW=86.97' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 0.04 cfs @ 6.69 fps)

2=Orifice/Grate (Controls 0.00 cfs)

(y) of the second secon

Pond 2P: Pipe Storage

Summary for Pond 3P: Tank 1

Inflow Area	=	18,392 sf,	67.08% Impervious,	Inflow Depth =	3.80" f	or 10-Year event
Inflow	=	1.76 cfs @	12.09 hrs, Volume=	5,819 cf		
Outflow	=	1.76 cfs @	12.10 hrs, Volume=	5,618 cf	, Atten=	0%, Lag= 0.3 min
Primary	=	1.76 cfs @	12.10 hrs, Volume=	5,618 cf	:	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 89.45' @ 12.10 hrs Surf.Area= 55 sf Storage= 245 cf

Plug-Flow detention time= 34.5 min calculated for 5,618 cf (97% of inflow) Center-of-Mass det. time= 14.1 min (799.2 - 785.1)

Volume	Invert	Avail.Stor	age	Storage Description
#1	85.00'	29	3 cf	5.00'W x 11.00'L x 5.33'H 1500 Gal Tank
Device	Routing	Invert	Outle	t Devices
#1	Primary	88.65'	12.0" L= 15 Inlet / n= 0.0	Round RCP_Round 12" .0' RCP, square edge headwall, Ke= 0.500 Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900 D10 PVC, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.75 cfs @ 12.10 hrs HW=89.45' (Free Discharge) -1=RCP_Round 12" (Barrel Controls 1.75 cfs @ 3.59 fps)

Pond 3P: Tank 1

Summary for Pond 5P: Tank 2

Inflow Area	a =	13,997 sf,	62.64% Impervious,	Inflow Depth = 3.6	69" for 10-Year event
Inflow	=	1.31 cfs @	12.09 hrs, Volume=	4,306 cf	
Outflow	=	1.31 cfs @	12.10 hrs, Volume=	4,105 cf, A	Atten= 0%, Lag= 0.3 min
Primary	=	1.31 cfs @	12.10 hrs, Volume=	4,105 cf	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 89.31' @ 12.10 hrs Surf.Area= 55 sf Storage= 237 cf

Plug-Flow detention time= 43.5 min calculated for 4,105 cf (95% of inflow) Center-of-Mass det. time= 17.0 min (806.3 - 789.4)

Volume	Invert	Avail.Stor	age	Storage Description
#1	85.00'	29	3 cf	5.00'W x 11.00'L x 5.33'H 1500 Gal Tank
Device	Routing	Invert	Outle	et Devices
#1	Primary	88.65'	12.0 L= 1 Inlet n= 0	" Round RCP_Round 12" 5.0' RCP, square edge headwall, Ke= 0.500 / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900 .010 PVC, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.31 cfs @ 12.10 hrs HW=89.31' (Free Discharge) -1=RCP_Round 12" (Barrel Controls 1.31 cfs @ 3.38 fps)

Pond 5P: Tank 2

Summary for Reach 8R: ADS Pipe

 Inflow Area =
 32,389 sf, 65.16% Impervious, Inflow Depth > 1.33" for 25-Year event

 Inflow =
 0.04 cfs @ 22.82 hrs, Volume=
 3,585 cf

 Outflow =
 0.04 cfs @ 22.83 hrs, Volume=
 3,585 cf, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Max. Velocity= 3.02 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.84 fps, Avg. Travel Time= 0.2 min

Peak Storage= 0 cf @ 22.83 hrs Average Depth at Peak Storage= 0.05' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.98 cfs

8.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 27.0' Slope= 0.0519 '/' Inlet Invert= 85.00', Outlet Invert= 83.60'

Reach 8R: ADS Pipe

Summary for Pond 2P: Pipe Storage

Inflow Are	ea =	32,389 sf, 65.16% Impervious,	Inflow Depth = 4.48" for 25-Year event
Inflow	=	3.74 cfs @ 12.10 hrs, Volume=	12,092 cf
Outflow	=	0.04 cfs @ 22.82 hrs, Volume=	3,585 cf, Atten= 99%, Lag= 643.8 min
Primary	=	0.04 cfs @ 22.82 hrs, Volume=	3,585 cf

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 87.47' @ 22.82 hrs Surf.Area= 3,744 sf Storage= 10,191 cf

Plug-Flow detention time= 738.5 min calculated for 3,584 cf (30% of inflow) Center-of-Mass det. time= 602.9 min (1,398.0 - 795.1)

Volume	Invert	Avail.Storage	Storage Description
#1	85.00'	11,133 cf	36.0" Round RCP_Round 36" × 7
			L= 225.0'
#2	85.00'	250 cf	5.00'W x 10.00'L x 5.00'H Tank Housing
#3	85.00'	250 cf	5.00'W x 10.00'L x 5.00'H Tank Housing
#4	85.00'	250 cf	5.00'W x 10.00'L x 5.00'H Tank Housing
		11,883 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices	
#1	Primary	85.00'	1.0" Vert. Orifice/Grate	C= 0.600
#2	Primary	87.50'	6.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.04 cfs @ 22.82 hrs HW=87.47' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 0.04 cfs @ 7.51 fps)

2=Orifice/Grate (Controls 0.00 cfs)

Pond 2P: Pipe Storage

Summary for Pond 3P: Tank 1

Inflow Area	=	18,392 sf,	67.08% Impervious,	Inflow Depth = 4	4.68" fo	r 25-Year event
Inflow	=	2.14 cfs @	12.09 hrs, Volume=	7,168 cf		
Outflow	=	2.14 cfs @	12.10 hrs, Volume=	6,967 cf,	Atten=	0%, Lag= 0.3 min
Primary	=	2.14 cfs @	12.10 hrs, Volume=	6,967 cf		

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 89.56' @ 12.10 hrs Surf.Area= 55 sf Storage= 251 cf

Plug-Flow detention time= 29.6 min calculated for 6,967 cf (97% of inflow) Center-of-Mass det. time= 12.6 min (792.3 - 779.7)

Volume	Invert	Avail.Stor	age	Storage Description
#1	85.00'	29	3 cf	5.00'W x 11.00'L x 5.33'H 1500 Gal Tank
Device	Routing	Invert	Outle	et Devices
#1	Primary	88.65'	12.0' L= 1 Inlet n= 0.	" Round RCP_Round 12" 5.0' RCP, square edge headwall, Ke= 0.500 / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900 .010 PVC, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.14 cfs @ 12.10 hrs HW=89.56' (Free Discharge) -1=RCP_Round 12" (Barrel Controls 2.14 cfs @ 3.75 fps)

Pond 3P: Tank 1

Summary for Pond 5P: Tank 2

Inflow Area	=	13,997 sf,	62.64% Impervious,	Inflow Depth = 4.5	7" for 25-Year event
Inflow	=	1.61 cfs @	12.09 hrs, Volume=	5,326 cf	
Outflow	=	1.60 cfs @	12.10 hrs, Volume=	5,125 cf, At	tten= 0%, Lag= 0.3 min
Primary	=	1.60 cfs @	12.10 hrs, Volume=	5,125 cf	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 89.40' @ 12.10 hrs Surf.Area= 55 sf Storage= 242 cf

Plug-Flow detention time= 37.4 min calculated for 5,125 cf (96% of inflow) Center-of-Mass det. time= 15.3 min (799.0 - 783.7)

Volume	Invert	Avail.Stora	age Storage Description
#1	85.00'	293	3 cf 5.00'W x 11.00'L x 5.33'H 1500 Gal Tank
Device	Routing	Invert	Outlet Devices
#1	Primary	88.65'	12.0" Round RCP_Round 12" L= 15.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.60 cfs @ 12.10 hrs HW=89.40' (Free Discharge) -1=RCP_Round 12" (Barrel Controls 1.60 cfs @ 3.52 fps)

Pond 5P: Tank 2

Summary for Reach 8R: ADS Pipe

 Inflow Area =
 32,389 sf, 65.16% Impervious, Inflow Depth > 2.60" for 100-Year event

 Inflow =
 0.24 cfs @
 14.23 hrs, Volume=
 7,011 cf

 Outflow =
 0.24 cfs @
 14.24 hrs, Volume=
 7,011 cf, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Max. Velocity= 5.16 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.25 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 14.23 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.98 cfs

8.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 27.0' Slope= 0.0519 '/' Inlet Invert= 85.00', Outlet Invert= 83.60'

Reach 8R: ADS Pipe

Summary for Pond 2P: Pipe Storage

Inflow Area	a =	32,389 sf,	65.16% Impervious,	Inflow Depth =	5.86"	for 100	-Year event
Inflow	=	4.78 cfs @	12.10 hrs, Volume=	15,805 c	f		
Outflow	=	0.24 cfs @	14.23 hrs, Volume=	7,011 c	f, Atten	= 95%,	Lag= 128.3 min
Primary	=	0.24 cfs @	14.23 hrs, Volume=	7,011 c	f		

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 87.78' @ 14.23 hrs Surf.Area= 2,626 sf Storage= 11,177 cf

Plug-Flow detention time= 527.4 min calculated for 7,010 cf (44% of inflow) Center-of-Mass det. time= 410.1 min (1,196.8 - 786.7)

Volume	Invert	Avail.Storage	Storage Description
#1	85.00'	11,133 cf	36.0" Round RCP_Round 36" × 7
			L= 225.0'
#2	85.00'	250 cf	5.00'W x 10.00'L x 5.00'H Tank Housing
#3	85.00'	250 cf	5.00'W x 10.00'L x 5.00'H Tank Housing
#4	85.00'	250 cf	5.00'W x 10.00'L x 5.00'H Tank Housing
		11,883 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices	
#1	Primary	85.00'	1.0" Vert. Orifice/Grate	C= 0.600
#2	Primary	87.50'	6.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.24 cfs @ 14.23 hrs HW=87.78' (Free Discharge)

1=Orifice/Grate (Orifice Controls 0.04 cfs @ 7.96 fps)

-2=Orifice/Grate (Orifice Controls 0.20 cfs @ 1.79 fps)

Pond 2P: Pipe Storage

Summary for Pond 3P: Tank 1

Inflow Area	a =	18,392 sf,	67.08% Impervious,	Inflow Depth =	6.05" for	100-Year event
Inflow	=	2.73 cfs @	12.09 hrs, Volume=	9,280 cf		
Outflow	=	2.73 cfs @	12.10 hrs, Volume=	9,079 cf,	, Atten= 0%	%, Lag= 0.3 min
Primary	=	2.73 cfs @	12.10 hrs, Volume=	9,079 cf		

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 89.74' @ 12.10 hrs Surf.Area= 55 sf Storage= 261 cf

Plug-Flow detention time= 24.4 min calculated for 9,077 cf (98% of inflow) Center-of-Mass det. time= 10.9 min (784.1 - 773.2)

Volume	Invert	Avail.Stora	rage Storage Description	
#1	85.00'	293	93 cf 5.00'W x 11.00'L x 5.33'H 1500 Gal Tank	
Device	Routing	Invert	Outlet Devices	_
#1	Primary	88.65'	12.0" Round RCP_Round 12" L= 15.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=2.73 cfs @ 12.10 hrs HW=89.74' (Free Discharge) -1=RCP_Round 12" (Barrel Controls 2.73 cfs @ 3.98 fps)

Pond 3P: Tank 1

Summary for Pond 5P: Tank 2

Inflow Area	ı =	13,997 sf,	62.64% Impervious,	Inflow Depth = 5	5.94" for 100-Year event
Inflow	=	2.06 cfs @	12.09 hrs, Volume=	6,927 cf	
Outflow	=	2.06 cfs @	12.09 hrs, Volume=	6,726 cf,	Atten= 0%, Lag= 0.3 min
Primary	=	2.06 cfs @	12.09 hrs, Volume=	6,726 cf	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 89.53' @ 12.09 hrs Surf.Area= 55 sf Storage= 249 cf

Plug-Flow detention time= 30.9 min calculated for 6,724 cf (97% of inflow) Center-of-Mass det. time= 13.3 min (790.2 - 776.9)

Volume	Invert	Avail.Stora	rage Storage Description	
#1	85.00'	293	93 cf 5.00'W x 11.00'L x 5.33'H 1500 Gal Tank	
Device	Routing	Invert	Outlet Devices	_
#1	Primary	88.65'	12.0" Round RCP_Round 12" L= 15.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 88.65' / 88.50' S= 0.0100 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=2.05 cfs @ 12.09 hrs HW=89.53' (Free Discharge) -1=RCP_Round 12" (Barrel Controls 2.05 cfs @ 3.72 fps)

Pond 5P: Tank 2

Section II Stormwater Management

♦ STANDARD #1 No New Stormwater Conveyances

The proposed development proposes no new stormwater conveyances that discharge untreated stormwater off-site or cause down gradient erosion.

STANDARD #2 Post Development Peak Discharge

The overall site analysis demonstrates that the stormwater management system has been designed so that the post-development peak discharge rates do not exceed the pre-development discharge rate for the 2yr, 10 yr, 25yr & 100 yr 24 hr storm events.

♦ STANDARD #3 RECHARGE TO GROUNDWATER

High groundwater and poor soils restrict the feasibility of onsite infiltration of stormwater. This project is for the redevelopment of an existing dwelling and proposes to reduce peak flows from the 2, 10, 25, and 100 year storm events.

♦ STANDARD #4 WATER QUALITY

High groundwater and poor soils restrict the feasibility of onsite infiltration of stormwater. This project is for the redevelopment of an existing dwelling and proposes to reduce peak flows from the 2, 10, 25, and 100 year storm events.

• TSS REMOVAL (see TSS Removal Work Sheet)

Mass. Dept. of Environmental Protection

which enters the BMP

*Equals remaining load from previous BMP (E)

Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

Date:	Prepared By:	Project:
5/30/2019	ВК	18-365

Outlet o	be Com	Separat
or BMP	pleted	te Form
Train	for Ea	1 Need
	ch	s to

Total TSS Removal =

44%

TSS Removal Calculation Worksheet								
			Oil Grit Separator	Deep Sump and Hooded Catch Basin	BMP ¹	B	Location:	
0.00	0.00	0.00	0.25	0.25	TSS Removal Rate ¹	C	345 Oak Street, Pembroke	
0.56	0.56	0.56	0.75	1.00	Starting TSS Load*	D		
0.00	0.00	0.00	0.19	0.25	Amount Removed (C*D)	т		
0.56	0.56	0.56	0.56	0.75	Remaining Load (D-E)	п		

Version 1, Automated: Mar. 4, 2008

INSTRUCTIONS: 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

Select BMP from Drop Down Menu
 After BMP is selected, TSS Removal and other Columns are automatically completed.

- STANDARD #5 Land Uses With Higher Potential Pollutant Loads The site and use is not a LUHPPL
- STANDARD #6 Critical Areas The site is not located near an Outstanding Resource Water Resource.
- STANDARD #7 Redevelopment This project is a redevelopment project.
- STANDARD #8 Erosion & Sediment Control Plan Erosion and sediment controls are detailed within the site plan.
- STANDARD #9 Operation & Maintenance Plan See O&M plan attached hereto.
- STANDARD #10 Illicit Discharge Statement

"All illicit discharges to the stormwater management system are prohibited."

This statement is intended to meet Standard #10 of the Stormwater Management requirements

Illicit discharges to the stormwater management system are discharges that are not entirely comprised of stormwater.

Except for the potential for deliberate criminal act of discharge by an unauthorized entity for which the property owner has no control, there are to be no illicit discharges into the stormwater system.

AGENT Applicant\O

Section III

Operation & Maintenance

OPERATION AND MAINTENANCE PLAN

PROPOSED SITE WORK – DURING CONSTRUCTION 420 Washington Street, Assessors Map E12-31 Pembroke, Massachusetts

Owner:

Champion Builders Inc. P.O. Box #1414 Duxbury, MA 02331 Contact: (781) 585-4114 Email: mdacey@championbuilders.com **Party Responsible for Operation and Maintenance**: Champion Builders Inc. P.O. Box #1414 Duxbury, MA 02331 Contact: (781) 585-4114 Email: mdacey@championbuilders.com

Source of Funding:

Operation and Maintenance of this stormwater management system will be the responsibility of the property owner to include its successor and/or assigns, as the same may appear on record with the appropriate register of deeds.

During Construction:

Construction activities shall follow the Construction Sequence shown on the approved plans. During periods of active construction the stormwater management system shall be inspected on a weekly basis and within 24 hours of a storm event of greater than ½". Maintenance tasks shall be performed monthly or after significant rainfall events of 1" of rain or greater. During construction, silt-laden runoff shall be prevented from entering the drainage system and off-site properties. Temporary swales shall be constructed as needed during construction to direct runoff to sediment traps. Infiltration systems and subsurface storage systems shall not be placed in service until after the installation of base course pavement and vegetative stabilization of the areas contributing to the systems.

During dewatering operations, all water pumped from the dewatering shall be directed to a "dirt bag" pumped sediment removal system (or approved equal) as manufactured by ACF Environmental. Water from construction dewatering activities should not be directed into any of the existing or proposed stormwater management facilities system unless it is fully treated prior to discharge. The unit shall be placed on a crushed stone blanket. Disposal of such "dirt bag" shall occur when the device is full and can no longer effectively filter sediment or allow water to pass at a reasonable flow rate. Disposal of this unit shall be the responsibility of the contractor and shall be as directed by the owner in accordance with applicable local, state, and federal guidelines and regulations.

All erosion and sedimentation control measures shall be in place prior to the commencement of any site work or earthwork operations, and shall be maintained during construction, and shall remain in place until all site work is complete and ground cover is established.

All exposed soils not to be paved shall be stabilized as soon as practical. Seed mixes shall only be applied during appropriate periods as recommended by the seed supplier, typically May 1 to October 15. Any exposed soils that cannot be stabilized by vegetation during these dates shall be stabilized with hay bales, hay mulch, check dams, jute netting or other acceptable means.

Once each structure is in place, it should be maintained in accordance with the procedures described in the post-construction Operations and Maintenance Plan.

During dry periods where dust is created by construction activities the following control measures should be implemented.

- Sprinkling The contractor may sprinkle the ground along haul roads and traffic areas until moist.
- Vegetative cover Areas that are not expected to be disturbed regularly may be stabilized with vegetative cover.
- Mulch Mulching can be used as a quick and effective means of dust control in recently disturbed areas.
- Spray on chemical soil treatments may be utilized. Application rates shall conform to manufacturers recommendations.

Illicit Discharges

Illicit discharges to the stormwater management system are discharges that are not entirely comprised of stormwater. Illicit discharges are prohibited from the stormwater management system and the stormwater management system shall be inspected for illicit discharges annually.

STORMWATER MANAGEMENT BEST MANAGEMENT PRACTICES INSPECTION SCHEDULE AND EVALUATION CHECKLIST – CONSTRUCTION PHASE

PROJECT LOCATION: <u>345 Oak Street, Pembroke</u>

Stormwater Control Manager: _____

Best Management Practice	Inspection Frequency (1)	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/ Repair Needed yes/no List items	Date of Cleaning/Repair	Performed By	Water Level in Detention System
Silt socks &	After every							
silt trans	event							
P 5								
Dewatering	Daily-							
Operations	during							
	actual							
	dewatering							
Temporary	Daily or as							
Construction	needed.							
Entrance								

(1) Refer to the Massachusetts Stormwater Management, Volume Two: Stormwater Technical Handbook for recommendations regarding frequency for inspection and maintenance of specific BMPs.

Limited or no use of sodium chloride salts, fertilizers or pesticides recommended. Slow release fertilizer recommended. Other notes:(Include deviations from: Con Com Order of Conditions, PB Approval, Construction Sequence and Approved Plan)

Stamp

Latest Revision:

May 30, 2019

OPERATION AND MAINTENANCE PLAN PROPOSED DRAINAGE SYSTEM – POST CONSTRUCTION 420 Washington Street, Assessors Map E12-31 Pembroke, Massachusetts

Owner:

Champion Builders Inc. P.O. Box #1414 Duxbury, MA 02331 Contact: (781) 585-4114 Email: mdacey@championbuilders.com Party Responsible for Operation and Maintenance:

After construction is complete the owner will be the party responsible for operation and maintenance of the drainage system. When the property is conveyed, the new owner will be the party responsible for operation and maintenance.

Source of Funding:

Operation and Maintenance of this stormwater management system will be the responsibility of the owner.

Schedule for Inspection and Maintenance: Outlet Structure

<u>Outlet Structure</u>

After construction, the outlet structure should be inspected at least once per year to ensure that the system is operating as intended. If accumulated sediment is observed within the structure it should be removed as necessary. Any sediment removed should be disposed of in accordance with Town, State and Federal Regulations.

The 1" diameter orifice should be kept clear of debris, and should be inspected quarterly to ensure no blockage exists. Standing water in the storage pipes is an indicator of such a blockage.

Illicit Discharges

Illicit discharges to the stormwater management system are discharges that are not entirely comprised of stormwater. Illicit discharges are prohibited from the stormwater management system and the stormwater management system shall be inspected for illicit discharges annually.

This Standard prohibits illicit discharges to stormwater management systems. The stormwater management system is the system for conveying, treating, and infiltrating stormwater on-site, including stormwater best management practices and any pipes intended to transport stormwater to the groundwater, a surface water, or municipal separate storm sewer system. Illicit discharges to the stormwater management system are discharges that are not entirely comprised of stormwater. Notwithstanding the foregoing, an illicit discharge does not include discharges from the following activities or facilities: firefighting, water line flushing, landscape irrigation, uncontaminated groundwater, potable water sources, foundation drains, air conditioning condensation, footing drains, individual resident car washing, flows from riparian habitats and wetlands, dechlorinated water from swimming pools, water used for street washing and water used to clean residential buildings without detergents.

For additional information, refer to <u>Performance Standards and Guidelines for Stormwater Management in Massachusetts</u>, published by the Department of Environmental Protection.

STORMWATER MANAGEMENT BEST MANAGEMENT PRACTICES

INSPECTION SCHEDULE AND EVALUATION CHECKLIST – POST CONSTRUCTION PHASE

PROJECT LOCATION: <u>345 Oak Street, Pembroke</u>

Latest Revision January 23, 2019

Best	Inspection	Date	Inspector	Minimum	Cleaning/	Date of	Performed	Water
Management	Frequency	Inspected		Maintenance	Repair	Cleaning/	By	Level in
Practice	(1)	_		and Key	Needed	Repair		Drainage
				Items to	yes/no	_		System
				Check	List items			
Outlet	Once per							
Structure	year							
L								
	-							

(1) Refer to the Massachusetts Stormwater Management, Volume Two: Stormwater Technical Handbook for recommendations regarding frequency for inspection and maintenance of specific BMPs.

(2) records shall be kept for a minimum of three years.

Limited or no use of sodium chloride salts, fertilizers or pesticides recommended. Slow release fertilizer recommended. Other notes:(Include deviations from: Con Com Order of Conditions, PB Approval, Construction Sequence and Approved Plan)

Stormwater Control Manager: _____

Stamp

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Plymouth County, Massachusetts

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Plymouth County, Massachusetts	13
636B—Montauk-Urban land complex, 0 to 8 percent slopes	
References	15

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

ဖ

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
636B	Montauk-Urban land complex, 0 to 8 percent slopes	1.6	100.0%
Totals for Area of Interest		1.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Plymouth County, Massachusetts

636B—Montauk-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2w7zx Elevation: 0 to 230 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Montauk and similar soils: 50 percent Urban land: 40 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Montauk

Setting

Landform: Hills, ground moraines, recessionial moraines, drumlins Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear, convex Across-slope shape: Convex Parent material: Coarse-loamy over sandy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Ap - 0 to 4 inches: fine sandy loam Bw1 - 4 to 26 inches: fine sandy loam Bw2 - 26 to 34 inches: sandy loam 2Cd - 34 to 72 inches: gravelly loamy sand

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: 20 to 39 inches to densic material
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 1.42 in/hr)
Depth to water table: About 18 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Low (about 5.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C Hydric soil rating: No

Description of Urban Land

Typical profile

M - 0 to 10 inches: cemented material

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: 0 inches to manufactured layer
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Available water storage in profile: Very low (about 0.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: D Hydric soil rating: Unranked

Minor Components

Scituate

Percent of map unit: 5 percent Landform: Drumlins, hills, ground moraines Landform position (two-dimensional): Summit, footslope, backslope Landform position (three-dimensional): Crest, side slope Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Udorthents, loamy

Percent of map unit: 5 percent Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

	Commonweal	th of Massachus Massachusett	setts
•	Soil Suitability Assessm	ent for On-site Sew	age Disposal
Performed by:	Brendan Kling GRADY CONSULTING, L.L.C. 71 Evergreen Street, Suite 1 Kingston, MA 02364 Phone: (781) 585-2300 Fa	ax: (781) 585-2378	Date: 1/29/19
Witnessed by:	LISA COLLITY	NO CHARGE : R	ESCHEDOLE
Location Address or Lot 345 OAK ST PEMBROKE, MA	:#	*Owner's Name *Address & *Telephone #	STEVE TOMASI
New Construction	Repair		781-354-7002
Office Review Published Soil Survey Year Published: Drainage Class:	Available: No X Yes Publication Scale: Soil Limitations:	Soil Ma	p Unit:
Published Soil Survey Year Published: Geologic Material (Map Landform:	Available: No <u>X</u> Yes Publication Scale: Unit):		
Flood Insurance Rate Above 500 year flood bo Within 500 year flood bo Within 100 year flood bo	Map: bundary: No Yes bundary No <u>⊁</u> Yes bundary No <u>×</u> Yes	<u>x</u>	
Wetland Area: National Wetland Invent Wetlands Conservancy	tory Map (map unit): Program Map (map unit):		·
Current Water Resource Range: Above Norr	ce Conditions (USGS): nal N	Month: <u>مَم</u> مين ormal	<u>₩₽₩</u> Below Normal
Other References Rev	iewed:		

Depth of Naturally Occurring Pervious Material

Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

If not, what is the depth of naturally occurring pervious material?

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise, and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated on the attached soil evaluation form, are accurate and in accordance with CMR 15.100 through 15.107.

Date: __ 22 Signature:

Deep Hole #	Date/	29	Time4;00) <u>An</u> w	eather_30	NERC	AST
Location(identify on Si Land Use <u>A Mass</u>	te Plan)S	lope(%) ^{[-}		Stones //	14		
Vegetation <u>478.55</u>			Landforn	1			
Distances from: Open	Water Body	ft. Possik	ole Wet Area	ft. Drin	king Water V	Vell	_ft.
Draina	gewayft. P	ropertyline <u>~</u>	<u>∖</u> ft Other				-
DEEP OBSERVATI	ON HOLE LOG		_ · _		_	_	
Depth From Surface (Inches)	Soll Horizon So (USDA (M	il Texture <u>unsell)</u>	Soil Color	Soil Mottlin	<u>ig</u> Other: <u>Boulders,</u>	Structures, Consistence	Stones, <u>/,%Gravel</u>
0-18	FILL -			<u> </u>	<u> </u>	~~	
18-36	B Si	LTY LOAM	10 yr 5/6	يوفينيي		- 0	IOME COARS
36-108	C SI	TY LOAM	104R 6/2	५४''		Тіснт,	10% 500
						0	Δ.,
						PICETS	of SANDY L
- <u></u>							
Parent Material (geolog	uc)		Г	enth to Be	drock		
Depth to Groundwater:	Standing	Water in Ho	le: W	eping from	n Pit Face	74''	
	Estimated	Seasonal H	ligh Groundwat	er <u>48</u>			
	DETERMINA	FION FOR S	EASONAL HIGH	HWATER T	ABLE		
<u>Method Used:</u> Depth observed st	anding in observa	tion hole:	inches v	Depth to	soil mottles	s: 48 in	ches
Depth to weeping t	rom side of obser	vation hole	:inches	Ground	water adjus	tment	t ·
Index Well # Re	ading Date	Index well i	evel Adj.ta	actor	Adj.Ground	water level	
PERCOLATION	TEST	Date_		Tim	9		
Observation Hole #			Time at 9"				
Depth of Perc	······································		Time at 6"				
Start Presoak			_ Time (9"-6")			<u> </u>	
End Presoak			Rate Min/Inch				
Site Suitability Assess	nent: Site Passe	ed Si	te Failed	Additional	Testing Nee	eded:	
Performed By Bren	dan Kling			Certificati	on #		
Witnessed By UISa	Cullity						÷.
/							;

E.

TITLE 5 ON-S	ITE REVIEW	,	~		**
Deep Hole #2	Date/	29 Time	915	Weather 3	2
Location(identify on	Site Plan <u>) て</u>				
Land Use_ <u>Vervs</u> Vegetation 1 Ac	S	liope(% <u>) ⊃*%</u> S	urface Stones_ andform		
		L(
Distances from: Ope	n Water Body1	ft. Possible Wet A	reaft. I	Drinking Water \	Nellft.
Drain	nagewayft. P	ropertyline <u>10-15</u> ft	Other		
Depth From Surface	Soil Horizon So	il Texture <u>Soil Co</u>	lor Soil M	ottling Other:	Structures, Stones,
(Inches)	<u>(USDA (M</u>	lunsell)		Boulders,	Consistency,%Grave
0-18"	FILL				
18-50	B	LOAM 10YK	:5/6 -		
				<u>i</u> t	
50-120	C SANDY	1 way 10 YK	3 6/2 61	0	15% STONES
			· · · · · · · · · · · · · · · · · · ·		
Parent Material (geol	ogic)	· · · · · · · · · · · · · · · · · · ·	Depth to	Bedrock	
Depth to Groundwate	r: Standing \ Estimated	Water in Hole: <u>人</u> Seasonal High Gro	<u>J</u> Weeping t undwater 60'	rom Pit Face	
	Lotimatou				
	DETERMINAT	FION FOR SEASON	<u>AL HIGH WATE</u>	<u>R TABLE</u>	
Depth observed s	standing in observa	tion hole: inch	es 🗸 Depti	h to soil mottle	s: 60 inches
Depth to weeping	from side of obser	vation hole:inc	hes Grou	undwater adjus	tmentft
Index Well # F	Reading DateI	Index well level	_ Adj.factor	Adj.Ground	water level
PERCOLATIO	N TEST	Date1/2	٩ ٦	Fime 11:00	
Observation Hole #	7	Time a	t Q"		
Dopth of Porc	541	Time a	t 6"		
Ctart Dracat	11:17	Time //	u-ea)		
	11:27	Time (:	9-8) <u> </u>		
Site Suitability Asses \mathcal{D}	sment: Site Passe	ed Site Failed	Additio	nal Testing Nee	aed:
Performed By <u>Dren</u>	Idan Kling	\	Certifi	cation #	
Witnessed By Lisa		V			
Comments: PERC	AFTER LISA LEFT	10 -	~" <u>`</u>	a.20	
		10.7	<u>५</u> (भ	Lisu	

TITLE 5 ON-SITE REVIEW	
Deep Hole # 3 Date $1/29$ Time 930 Weather 30°	
Location(identify on Site Plan) #3	
Land Use_ <u>Starss</u> Slope(%) <u>レーム</u> Surface Stones	
Distances from: Open Water Body ft. Possible Wet Area ft. Drinking Water Well ft.	
Drainagewayft. Propertyline <u>10~15</u> ft Other	
DEEP OBSERVATION HOLE LOG	
Depth From Surface Soil Horizon Soil Texture Soil Color Soil Mottling Other: Structures, Stones,	
(Inches) (USDA (Munsell) Boulders, Consistency,%Grav	<u>əl</u>
D-50 File $PYR5/1$	
$F \Lambda'' T \Omega'' = F \Lambda''$	
JU-18 - SILTY LOAM 1.54R /L	_
	- »
	, car
	Y
· · · · · · · · · · · · · · · · · · ·	_
	_
	_
Parent Material (geologic) Depth to Bedrock	
Depth to Groundwater: Standing Water in Hole: 72 Weeping from Pit Face 55 '	
Estimated Seasonal High Groundwater <u>50</u>	
DETERMINATION FOR SEASONAL HIGH WATER TABLE	
Method Used: Depth observed standing in observation hole: inches Depth to soil mottles: 50 inches	
Depth to weeping from side of observation hole:inchesDepth to weeping from side of observation hole:inchesGroundwater adjustmentft	
Index Well # Reading Date Index well level Adj.factor Adj.Groundwater level	
PERCOLATION TEST Date Time	-
Observation Hole # Time at 9"	-
Depth of Perc Time at 6"	_
Start Presoak Time (9"-6")	
End Presoak Rate Min/Inch	
Site Suitability Assessment: Site Passed Site Failed Additional Testing Needed:	
Performed By_Brandan Kling Certification #	
Witnessed By Liga Cullity	
Comments:	

ł

; ;;

:

TITLE 5 ON-S	ITE REVIEW	1				- 0	
Deep Hole # Location(identify on	Date_ Site Plan)	1/29	Time_	11:30	Weather	. 30°	
Land Use Uses	·· · .	Slope(%	<u>) 3-8</u>	Surface Ston	es	_	
Distances from: Ope	n Water Body ageway	ft. P ft. Property	ossible Wet line_10-15	Area ft Other	ft. Drinking W	ater Well	ft.
DEEP OBSERVA	TION HOLE LO	G					
Depth From Surface (Inches)	Soil Horizon (USDA	Soil Textu (Munsell)	ire <u>Soil C</u>	<u>olor So</u>	<u>l Mottling</u> Bou	Other: Structure ders, Consisten	s, Stones, <u>cy,%Gravel</u>
0-18	FILL						
18"-42"	B	SANDY L	OAM.	40 ^{9 - 1}			
42-60	C	SANDY L	ઙૡઌ	Ч	8"	15%	STONES
Parent Materiai (geol Depth to Groundwate <u>Method Used:</u> Depth observed = Depth to weeping Index Well # i	ogic) er: Stand Estin <u>DETERM</u> standing in obs g from side of c Reading Date	ding Water i nated Seaso <u>MINATION F</u> servation ho observation Index v	n Hole: <u>.54</u> nal High Gr OR SEASON ole:inc hole:ir vell level	Depti ' Weepi oundwater <u>NAL HIGH W/</u> hes D hches C Adj.factor	n to Bedrock ng from Pit Fi 48 ¹ <u>ATER TABLE</u> epth to soil n iroundwater	ace nottles:_ <u>48</u> adjustment roundwater lev	inches _ft el
PERCOLATIO	N TEST	D	ate		_ Time		
Observation Hole #			Time	at 9" 📃			<u>.</u>
Depth of Perc			Time	at 6" 📃			
Start Presoak			Time	(9"-6")			
End Presoak	· <u> </u>		Rate	Min/Inch			
Site Suitability Asses	sment: Site I	Passed	_ Site Faile	ed Add	itional Testin	g Needed:	
Performed By Bren	Jan Kling			Ce	rtification #		
Witnessed By <u> </u>							
Comments:							

		te///	Time 1	Weathe	r	
Location(identify on	Site Plan)			0		
Land Use Vegetation		Slope(%) <u>></u>	<u>∽⊳</u> Surface Landfor	Stones m		
	· · · · ·	~				
Distances from: Ope	en Water Body	/ft. Possit	ble Wet Area	ft. Drinking V	Vater Well	ft.
Drai	nageway	ft. Propertyline_	2.0 ft Othe	er		
		00				
Depth From Surface	Soil Horizor	n Soil Texture	Soil Color	Soil Mottling	Other: Structure	s, Stone
(Inches)	<u>(USDA</u>	(Munsell)		<u></u> <u>Boi</u>	lders, Consister	ncy,%Gr
0-18	FILL	\sim				
18-36	ß			• .		·
			· •	,,		
36-66"	Ċ	SANDY LOAM		40	20 %	STO
Parent Material (geol Depth to Groundwate	logic) er: Sta	nding Water in Ho		Depth to Bedrock /eeping from Pit F	ace 48.	
Parent Material (geol Depth to Groundwate	logic) er: Sta Est	inding Water in Ho imated Seasonal I	le: W High Groundwa	Depth to Bedrock /eeping from Pit F ater4o ''	ace <u>48</u> **	
Parent Material (geol Depth to Groundwate	logic) er: Sta Est <u>DETE</u> I	nding Water in Ho imated Seasonal I RMINATION FOR S	le: W High Groundwa SEASONAL HIG	Depth to Bedrock /eeping from Pit F ater <u>40</u> 11 iH WATER TABLE	ace48+	
Parent Material (geol Depth to Groundwate <u>Method Used:</u> Depth observed Depth to weepin	logic) er: Sta Est <u>DETEI</u> standing in o g from side o	Inding Water in Ho Imated Seasonal I RMINATION FOR S Observation hole:	ole: W High Groundwa SEASONAL HIG inches a:inches	Depth to Bedrock /eeping from Pit F ater <u>40°</u> <u>H WATER TABLE</u> ✓ Depth to soil r Groundwater	ace <u>48</u>	inches ft
Parent Material (geol Depth to Groundwate <u>Method Used:</u> Depth observed Depth to weepin Index Well #	logic) er: Sta <u>DETEI</u> standing in o g from side o Reading Date	Inding Water in Ho Imated Seasonal I RMINATION FOR S Observation hole: of observation hole Index well I	evel Adj.	Depth to Bedrock /eeping from Pit F ater <u>40°</u> <u>H WATER TABLE</u> <u>↓</u> Depth to soil r <u></u> Groundwater factor Adj.G	ace <u>48</u> nottles: <u>40</u> adjustment_ roundwater lev	inches _ft el
Parent Material (geol Depth to Groundwate <u>Method Used:</u> Depth observed Depth to weepin Index Well #	logic) er: Sta <u>DETEI</u> standing in o g from side o Reading Date <u>DN TEST</u>	Inding Water in Ho imated Seasonal I RMINATION FOR S observation hole: of observation hole Index well I Date	ele: W High Groundwa BEASONAL HIG inches evel Adj.	Depth to Bedrock /eeping from Pit F ater <u>40</u> [™] H WATER TABLE Depth to soil r Groundwater factorAdj.G	ace <u>48</u> nottles: <u>40</u> adjustment_ roundwater lev	inches _ft el
Parent Material (geol Depth to Groundwate <u>Method Used:</u> Depth observed Depth to weepin Index Well # <u>PERCOLATIC</u> Observation Hole #	logic) er: Sta <u>DETEI</u> standing in o g from side o Reading Date <u>DN TEST</u>	Inding Water in Ho imated Seasonal I RMINATION FOR S observation hole: of observation hole Index well I Date_	ele: W High Groundwa BEASONAL HIG inches evel Adj. _ Time at 9"	Depth to Bedrock /eeping from Pit F ater4o'' iH WATER TABLE Groundwater factorAdj.G	ace <u>48</u> nottles: <u>40</u> adjustment_ roundwater lev	inches _ft el
Parent Material (geol Depth to Groundwate Depth observed Depth to weepin Index Well # PERCOLATIC Observation Hole # Depth of Perc	logic) er: Sta <u>DETEI</u> standing in o g from side o Reading Date <u>DN TEST</u>	anding Water in Ho imated Seasonal I RMINATION FOR S observation hole: of observation hole Index well I Date_	ele: W High Groundwa EASONAL HIG inches evel Adj. Time at 9" Time at 6"	Depth to Bedrock /eeping from Pit F ater <u>40</u> ⁺⁺ <u>40</u> HWATER TABLE <u>40</u> HWATER TABLE	ace <u>48</u>	inches _ft el
Parent Material (geol Depth to Groundwate <u>Method Used:</u> Depth observed Depth to weepin Index Well # <u>PERCOLATIC</u> Observation Hole # Depth of Perc Start Presoak	logic) er: Sta <u>DETEI</u> standing in o g from side o Reading Date <u>DN TEST</u>	anding Water in Ho imated Seasonal I RMINATION FOR S observation hole: observation hole: Index well I Date	ele: W High Groundwa SEASONAL HIG inches evel Adj. Time at 9" Time at 6" Time (9"-6")	Depth to Bedrock /eeping from Pit F ater <u>40</u> ⁺⁺ iH WATER TABLE ✓ Depth to soil r Groundwater factor Adj.G	ace <u>48</u>	inches _ft el
Parent Material (geol Depth to Groundwate Depth observed Depth to weepin Index Well # <u>PERCOLATIC</u> Observation Hole # Depth of Perc Start Presoak End Presoak	logic) er: Sta DETEI standing in o g from side o Reading Date DN TEST	Inding Water in Ho imated Seasonal I RMINATION FOR S observation hole: of observation hole: Index well I Date	evel Adj. Time at 9" Time at 6" Rate Min/Incl	Depth to Bedrock /eeping from Pit F ater4o ⁺⁺ :H WATER TABLE Depth to soil r Groundwater factor Adj.G	ace <u>48</u>	inches _ft el
Parent Material (geol Depth to Groundwate Depth observed Depth to weepin Index Well # <u>PERCOLATIC</u> Observation Hole # Depth of Perc Start Presoak End Presoak Site Suitability Asses	logic) er: Sta DETEI standing in o g from side o Reading Date <u>DN TEST</u>	anding Water in Ho timated Seasonal I RMINATION FOR S observation hole: of observation hole index well I Date Date Passed S	Die: W High Groundwa SEASONAL HIG inches evel Adj.i Time at 9" Time at 6" Time (9"-6") Rate Min/Incl ite Failed	Depth to Bedrock /eeping from Pit F ater <u>40</u> ⁺⁺ MUATER TABLE <u>40</u> ⁺⁺ MUATER TABLE <u>40</u> ⁺⁺ MUATER TABLE 40 ⁺⁺ 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 	ace <u>48</u>	inches _ft el
Parent Material (geol Depth to Groundwate <u>Method Used:</u> Depth observed Depth to weepin Index Well # <u>PERCOLATIO</u> Observation Hole # Depth of Perc Start Presoak End Presoak Site Suitability Asses Performed By	logic) er: Sta DETEI standing in o g from side o Reading Date <u>DN TEST</u> Ssment: Site	e Passed S	ole: W High Groundwa SEASONAL HIG inches evel Adj. Time at 9" Time at 6" Time (9"-6") Rate Min/Incl ite Failed	Depth to Bedrock /eeping from Pit F ater <u>40</u> ⁺⁺ iH WATER TABLE <u>4</u> Depth to soil r Groundwater factor Adj.G Time h Additional Testin Certification #	ace <u>48</u>	inches _ft el

TITLE 5 ON-S	SITE REVIEW	_		0 5	\sim	
Deen Hole #	Dat	1/29	Time V2	.)0 We	ather 31	
Location(identify on	Site Plan)	<u> </u>				
Land Use Grass	heish (H	Slope(%)_ <u>\</u>	<u>-3</u> Surfac	e Stones		
vegetation <u>nor a</u>	010/174		Landto	rm		
Distances from: Ope	en Water Body	ft. Poss	ible Wet Area	ft. Drink	ing Water Well_	ft.
Drai	nageway	_ft. Propertyline	<u> </u>	ner		
DEEP OBSERVA	TION HOLE L	OG				
Depth From Surface	Soil Horizon	Soil Texture	Soil Color	Soil Mottling	g Other: Stru	ictures, Stones,
(Inches)		<u>(Munsell)</u>			Boulders, Con	sistency,%Gravel
0-42	FILL					·
42'- 60 "	С	SANDY LOAM		48'	20%	Stones
	· · · ·				Some	Bouldary
	}					
		<u></u>				
	I					
			· · · · ·			
Parent Material (deo	logic)			Depth to Bed	rock	
Depth to Groundwat	er: Sta	nding Water in H	ole:	Weeping from	Pit Face	
	Est	imated Seasonal	High Groundv	vater		
	DETER		SEASONAL HI	GH WATER TA	BLE	
Method Used:			·		L	19
Depth observed Depth to weepin	standing in o	bservation hole: f observation hol	Inches le: inches	Depth to a Groundw	soil mottles: <u></u> ater adjustme	<u>()</u> inches nt ft
Index Well #	Reading Date	Index well	level Ad	j.factor	dj.Groundwat	er level
PERCOLATIO	ON TEST	Date		Time	·	
Observation Hole #			Time at 9"			
Depth of Perc			_ Time at 6"	<u>, </u>		
Start Presoak			Time (9"-6"))		
End Presoak			Rate Min/In	ch		
Site Suitability Asse	ssment: Site	e Passed \$	Site Failed	Additional 1	esting Needed	:
Performed By	rendan Kli	<u>nn</u>		Certificatio	on #	·····
Witnessed By	.	>				
Comments:						

TITLE 5 ON-S	ITE REVIEW				
Deep Hole #7 Location(identify on \$	Date Site Plan)	3-20-19	Time	<u>30 AM</u> Weather_	SUMMY - 45°
Land Use_Washer Vegetationk		Slope(% <u>) -</u>	Surface <u>٪ کڑ</u> Landfor	Stones	_
Distances from: Ope	n Water Body ¹⁰	^{⊳≁} ft. Possil	ole Wet Area	ft. Drinking Wa	ter Wellft.
Drain	agewa <u>y 50+</u> ft	. Propertyline_	15-20 ft Othe	er	
DEEP OBSERVAT	TION HOLE LOG	à			
Depth From Surface (Inches)	Soil Horizon (USDA	Soil Texture (Munsell)	Soil Color	<u>Soil Mottling</u> O Bould	ther: Structures, Stones, ers, Consistency,%Gravel
0-18	<u> </u>	FILL 1	.> YR 3/2		
18-48	B	SILTY Lot	ALL M. SYR	4/4	
48-84	C 4	Silty LOAM	7.5405/3	601	· · · · · · · · · · · · · · · · · · ·
84-150	CZ S.	ANDY LOAD	757R 6	12	
				· ·	
Parent Material (geolo	aic)		r	Penth to Bedrook	
Depth to Groundwater	r: Standir	ng Water in Ho	le: <u>144</u> w	eeping from Pit Fac	e
	Estima	ted Seasonal H	ligh Groundwa	ter <u>60‴</u>	_
Mathad Head	DETERMI	NATION FOR S	EASONAL HIG	H WATER TABLE	
Depth observed st	tanding in obse	rvation hole: $\frac{\mu}{2}$	<u>44</u> _inches	Depth to soil mo	ttles: 60 inches
Depth to weeping	from side of ob	servation hole	:inches	Groundwater ad	justmentft
			evel Adj.18	actor Adj.Gro	Indwater level
PERCOLATION	N TEST	Date		Time	
Observation Hole #		<u> </u>	Time at 9"	10:41	10:42
Depth of Perc	84"-102"		Time at 6"	11:40	11:39
Start Presoak	9:02	9:10	Time (9"-6")	<u>59 min</u>	57 MIN
End Presoak	9:17	4:25	Rate Min/Inch	_20	20
Site Suitability Assess	ment: Site Pa	ssed 🗸 Sit	e Failed	Additional Testing	Needed:
Performed By 12R2	NUAN KHI	NG-		Certification #	<u> </u>
Witnessed By_LISA /	ULLITY				
Comments:	Br	ACK FILLE	D W/PE	RL SAND	