DRAINAGE CALCULATIONS AND STORMWATER MANAGEMENT PLAN

For:

COMPREHENSIVE PERMIT PLAN RIVER MARSH VILLAGE PEMBROKE, MA

Located:

0 WATER STREET (ASSESSOR'S MAP E-17, LOT 0 & E-17A, LOT 274) PEMBROKE, MASSACHUSETTS

> Submitted to: TOWN OF PEMBROKE

Prepared For: RIVER MARSH, LLC 293R WASHINGTON STREET NORWELL, MA 02061

Professional Civil Engineering • Project Management • Land Planning 150 Longwater Drive, Suite 101, Norwell, Massachusetts 02061 Tel.: (781) 792-3900 Facsimile: (781) 792-0333 www.mckeng.com

> November 27, 2018 Revised April 5, 2021 Revised June 7, 2021

TABLE OF CONTENTS

1.	NAF	<u>Page</u>	
	•	Project Summary	1
	•	Pre-Development Condition	1
	•	Post-Development Condition	2
	•	Stormwater Best Management Practices (BMP's)	3
	•	Erosion and Sedimentation Control	3
	•	Compliance with Stormwater Management Standards	3
	•	Figure 1 (USGS Locus Map)	8
	•	Figure 2 (FEMA Flood Map)	9
	•	Figure 3 (NRCS Soils Map)	10

2. APPENDICES

•	APPENDIX A:	Pre-Development Condition
•	APPENDIX B:	Post Development Condition
•	APPENDIX C:	Checklist for Stormwater Report
•	APPENDIX D:	Illicit Discharge Compliance Statement Supplemental BMP Calculations
•	APPENDIX E:	Soil Testing Data
	APPENDIX F:	Best Management Practices Operation & Maintenance Plans

Drainage Calculations and Stormwater Management Plan Comprehensive Permit Plan River Marsh Village Pembroke, Massachusetts

Project Summary

The project proponent River Marsh, LLC, proposes to develop an approximate 49.94acre parcel of land located at 0 Water Street (Assessor's Map E-17, Lot 0 and E-17A, Lot 274) in Pembroke, Massachusetts. The development is being permitted under MGL Ch. 40B Comprehensive Permit and will consist of 56 condominium units comprised of 3, and 4-unit buildings. The proposed development will involve the construction of approximately 2,414 linear feet of bituminous roadways, residential buildings, driveways, stormwater management system, utilities and other related infrastructure.

The development will be comprised of two parcels which are shown on the Assessor's Map E-17, Lot 0 and E-17A, Lot 274. The site is located between the North River to the west and Water Street, at the intersection of Church Street (Route 139) to the east in Pembroke, Massachusetts. The entire site is located within the Residence "A" Zoning District and Business "B" Zoning District. Approximately 10,700 +/- square feet are in the Business "B" Zoning District. Access to the site will be provided by two (2) access points from Water Street. A double barrel entrance with 13-foot-wide travel lanes and an 8-foot-wide median and a 22-foot-wide roadway. Refer to Figure 1- USGS Locus Map for the location of the parcel.

The project will access utility infrastructure located on Water Street including electric, water, telephone and cable television. The lots will be served by a shared subsurface sewage disposal system with a pump chamber and connections to the municipal water system which will extend from Water Street throughout the proposed development. All stormwater management facilities will be designed provide renovation of stormwater and meet the requirements of the Department of Environment Protection's Stormwater Management Regulations. The existing and proposed site conditions are illustrated on the project *site plans* entitled "River March Village, Comprehensive Permit Plan, Water Street, Pembroke, Massachusetts", prepared by McKenzie Engineering Group, Inc. dated November 27, 2018, with a latest revision date of June 7, 2021.

This report contains stormwater runoff calculations for the pre-development and postdevelopment conditions and includes the sizing of the drainage system and stormwater best management practices (BMPs).

Pre-Development Condition

The site is located primarily within the Residence "A" Zoning District and is comprised of 22.53 acres of upland and 27.41 acres of wetland. The Massachusetts Department of Environmental Protection (DEP) has confirmed the wetland resource area by issuance of a Superseding Order of Resource Area Delineation (ORAD). The wetland complex that extends from the North River is tidal in nature. The project is exempt from Standard 2 of the Massachusetts DEP Stormwater Management Regulations for land subject to coastal storm flowage as defined in 310 CMR 10.04.

One single family home currently exists on parcel Map E-17A Lot 274, which is to be retained. The project site is partially wooded and partially cleared with grass cover and wetlands toward the west side of the site approaching the North River. No improvements have been made to the land. The topography of the site is varied with elevations ranging from 30 feet (NAVD88) along the eastern boundary of the parcel to 5 feet (NAVD88) at the natural riverbank of the North River. Slopes vary from gentle to somewhat steeper grades sloping toward the wetlands on the west side of the site.

Review of available environmental databases such as MassGIS reveals that the site is not located within a mapped Natural Heritage Area, a Zone II or Zone III Groundwater Recharge Area, an Interim Wellhead Protection Area (IWPA), or a Contributing Watershed to Outstanding Resource Water (ORW). Review of the Town of Pembroke's Zoning Map reveals that the site is not located within any other protection area.

The site is within Zone AE (Elevation 8-NAVD88) and Zone X of the Flood Insurance Rate Map, as shown on the current FEMA Flood Insurance Rate Map Panel Nos. 25023C0206J and 25023C0207J with an effective date of July 17, 2012. Refer to Figure 2 – FEMA Flood Map.

The Natural Resources Conservation Service (NRCS) has identified the soil on the site as Scarboro, Ipswich, Squamscott, Eldridge, Hinckley, Merrimac, Windsor and Deerfield soils. The soils range in hydrological soil group classifications from 'A' to 'D'. Soil testing conducted by McKenzie Engineering Group, Inc. (MEG) on March 16, 2021 and May 17 and 18, 2021, identified the soils to be sandy loam. Refer to Figure 3 – Soil Map.

The existing watershed analyzed in this report is comprised of approximately 32.4 acres consisting of the subject parcel to be developed and offsite tributary areas. The watershed consists of four (4) sub-catchments. Refer to the Pre-Development Watershed Plan WS-1 in Appendix A for a delineation of drainage subcatchments for the pre-development design condition.

The SCS Technical Release 20 (TR-20) and Technical Release 55 (TR-55) methodbased program "HydroCAD" was employed to develop pre- and post-development peak flows. Drainage calculations were prepared for the pre-development condition for the 2, 10, 25 and 100-year, Type III storm events. Refer to Appendix A for computer results, soil characteristics, cover descriptions and times of concentrations for all subareas.

Post-Development Condition

The proposed development will consist of 56 condominium units comprised of 3, and 4unit buildings with bituminous concrete access roadways, parking areas and associated infrastructure. Visitor parking will be dispersed throughout the site. Access to the site will be provided by a private 22 ft. wide roadway with two access points from Water Street.

Watershed areas were analyzed in the post-development condition to design stormwater management facilities to mitigate impacts resulting from developing the property. The objective in designing the proposed drainage facilities for the project was to maintain existing drainage patterns to the extent practicable and to ensure that the post-development rates of runoff are less than pre-development rates at the design points.

Refer to the Post-Development Watershed Plan WS-2 in Appendix B for a delineation of post-development drainage subareas. The design points for the post-development design conditions correspond to those analyzed for the pre-development design condition.

Drainage calculations were prepared by employing the SCS TR-20 Methods for the 2, 10, 25 and 100-year, type III storm events. Refer to Appendix B for computer results. The subsurface infiltration chambers were designed to accommodate peak flows generated by all storms up to and including the 100-year storm event. Refer to site plans for the drainage system design.

The project is exempt from Standard 2 of the Massachusetts DEP Stormwater Management Regulations for land subject to coastal storm flowage as defined in 310 CMR 10.04.

Stormwater Best Management Practices (BMP's)

The treatment stream shall consist of deep sump hooded catch basins, a sediment forebay and an infiltration basin to achieve the required removal of a least 80% of the total suspended solids (TSS) and mitigate the anticipated pollutant loading.

Refer to the TSS Removal Worksheets in Appendix D for TSS removal rates.

Erosion and Sedimentation Controls

Compost filter tube (Silt sock) erosion control barriers will be placed at the limit of work prior to the commencement of any construction activity. The integrity of the silt sock will be maintained by periodic inspection and replacement as necessary. The silt sock will remain in place until the first course of pavement has been placed and all side slopes have been loamed and seeded and vegetation has been established. Refer to the Erosion Control details on the Site Development Plans and BMP Operation and Maintenance Plan for proposed erosion control measures to be employed for the project.

Compliance with Stormwater Management Standards

Standard 1 – No New Untreated Discharges

The proposed redevelopment will not introduce any new untreated discharges to a wetland area or waters of the Commonwealth of Massachusetts. All discharges from the site will be treated through proposed stormwater quality controls such as deep sump hooded catch basin, propriety pre-treatment units, subsurface infiltration chambers, sediment forebay and extended dry detention basin including the establishment of proper maintenance procedures.

Standard 2 – Peak Rate Attenuation

In the pre-development and post-development stormwater analysis, the watershed area analyzed was approximately 32.4 acres consisting of the subject parcel to be developed and offsite tributary areas. Refer to Existing Watershed Delineation Plan WS-1 for a delineation of drainage subareas for the pre-development design condition and refer to Post-Development Watershed Delineation Plan WS-2 for a delineation of drainage subareas for the post-development design condition.

Drainage calculations were performed by employing SCS TR-20 methods for the 1, 2, 10, 25, and 100-year Type III storm events. Refer to Appendix A and B for computer results. All drainage structures will be designed employing the Rational Method and the Mass. DPW Design Manual to accommodate peak flows generated by a minimum of a 25-year storm event or a 100-year storm event where applicable. The stormwater management systems were designed to accommodate peak flows generated by a 100-year storm event.

Table 1 – Pre-Development Results							
	Design Storm (flow in cfs)						
	2-Year10-Year25-Year Storm100-Year StormStormStormStormStorm						
Design Point	Flow (CFS)	Flow (CFS)	Flow (CFS)	Flow (CFS)			
DP-1	1.53	10.20	18.26	30.86			
DP-2 0.24 1.79 3.68 7.53							
DP-3	0.00	0.03	0.15	0.66			
DP-4	0.20	0.40	0.56	0.059			

The peak rates of runoff and elevations for this condition are as follows:

	Design Storm	n (volume in ac-ft)	
	2-Year	10-Year	25-Year Storm	100-Year Storm
	Storm	Storm		
Dooign Boint	Volume	Volume	Volume	Volume
Design Point	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)
DP-1	0.664	1.623	2.444	3.919
DP-2	0.091	0.304	0.504	0.882
DP-3	0.000	0.02	0.051	0.121
DP-4	0.015	0.029	0.040	0.059

The peak rates of runoff and elevations for this condition are as follows:

Table 2 – Post-Development Results							
	Design Storm (flow in cfs)2-Year10-Year StormStorm25-Year Storm						
Design Point	Flow (CFS)	Flow (CFS)	Flow (CFS)	Flow (CFS)			
DP-1	1.51	9.08	15.56	27.67			
DP-2 0.17 1.53 3.61 6.77							
DP-3	0.00	0.00	0.00	0.00			
DP-4	0.00	0.00	0.00	0.00			

	Design Storm (volume in ac-ft)							
	2-Year 10-Year Storm 25-Year Storm 100-Year Storm							
Design Point	Volume (AC-FT)	Volume (AC-FT)	Volume (AC-FT)	Volume (AC-FT)				
DP-1	0.782	2.039	3.034	4.757				
DP-2	0.229	0.576	0.879	1.425				
DP-3	0.000	0.000	0.000	0.000				
DP-4	0.000	0.000	0.000	0.000				

Although the project is exempt from Standard 2 of the Massachusetts DEP Stormwater Management Regulations for land subject to coastal storm flowage as defined in 310 CMR 10.04, a comparison of the pre-development and post-development peak rates of runoff indicate that the peak rates of runoff for the post-development condition at all Design Points will be less than the pre-development condition for all storm events.

Te-Development vs. Tost-Development Teak Ganace Lievations								
Design Point	<u>2 Year Storm</u>		<u>10 Year Storm</u>		25 Year Storm		100 Year Storm	
	Exist. (Ft)	Prop. (Ft)	Exist. (Ft)	Prop. (Ft)	Exist. (Ft)	Prop. (Ft)	Exist. (Ft)	Prop. (Ft)
E-P1	18.04	18.04	18.06	18.06	18.07	18.07	18.09	18.09
E-P2	13.03	13.03	13.21	13.30	13.30	13.47	13.38	13.70

Pre-Development vs. Post-Development Peak Surface Elevations

Standard 3 – Groundwater Recharge

Runoff will be infiltrated by the subsurface infiltration chambers, which will meet the Stormwater Guidelines for infiltration:

- The subsurface infiltration chambers will be four (4) feet above seasonal high groundwater.
- Utilize the "Simple Dynamic" method for sizing the storage volume, which takes into account the fact that stormwater is exfiltrating from the infiltration basin at the same time that the basin is filling.
- Hydraulic conductivity is based on soil data from the test pits and values developed from Rawls, Brakensiek and Saxton, 1982, Estimation of Soil Water Properties, *Transactions of the American Society of Agricultural Engineers*, vol.25, no. 5.
- Refer to Appendix D for infiltration and drawdown calculations and Appendix E for soil data.

Groundwater Recharge Volume

Infiltration Chambers	Soil Type	Target Depth Factor (F) (in)	Total Impervious Area (sf)	Required Recharge Volume (cf) ¹	Provided Recharge Volume (cf) ²
	А	0.60	85,595	4,280	

	С	0.25	130,281	2,714		
2P						
				6,994 (9,999 ADJ.)	10,406	
	[Simple dynamic]					

- Required Recharge Volume = Target Depth Factor x Impervious Area / (d+Kt) (Refer to supplemental calculations in Appendix D)
- 2. Provided Recharge Volume = Volume provided below lowest invert elevation.

Per Standard 3, if stormwater runoff from less than 100% of the site's impervious cover is directed to the BMP intended to infiltrate the Required Recharge Volume, then the storage capacity of the infiltration BMP needs to be increased so that the BMP can capture more of the runoff from the impervious surfaces located with the contributing drainage area. The impervious cover directed towards the infiltration system is 69.58%; therefore, a capture area adjustment was made. Refer to Appendix D for Capture Area Adjustment calculations.

The proposed infiltration basin has been designed to completely drain within 72 hours. The drawdown analysis is based on the required recharge volume exfiltrating at the Rawls Rates based on the soil textural analysis conducted at the proposed exfiltration location. Refer to Appendix D for calculations.

Standard 4 – Water Quality

The Long-Term Pollution Prevention Plan has been incorporated into the Post-Development Operation and Maintenance Plan. Refer to Appendix F for BMP Operation and Maintenance Plans.

The total required water quality treatment volume was calculated to be 17,990 cubic feet. The one-inch rule has been applied to the water quality volume calculations. The water quality treatment volume will be provided within the storm water management facilities as follows:

	Required	Proposed	
Catchment Area	WQ Volume (cf)	WQ Volume (cf)	
P4a	3,094		FD-4HC (see below)
P4b	295		FD-4HC (see below)
			Extended Dry Detention
P4c	5,499	5,499	Basin with Sediment Forebay
P4d	0	0	
			Subsurface Infiltration
Roofs Only	8,744	10,406	Chambers – Cultec R-902HD
P2	1,504	0	
P4	1,306	0	
P5	1,486	0	
	17,990	15,905	

Water Quality Treatment Volume

Proprietary treatment units - First Defense High-Capacity treatment units will pre-treat

method1

and treat the required water quality volume. MassDEP has adopted a standard method to convert required water quality volume to a discharge rate for sizing flow based on manufactured proprietary stormwater treatment practices. The one inch rule has been applied to the water quality flow rate calculations. Refer to Appendix D for supporting calculations. The water quality treatment flow rate is provided within the storm water management facilities is as follows:

Proposed							
WQ Flow Rate (cfs)							
	First Defense Unit -						
3.8	FD-6HC						
1.2	First Defense Unit - FD-4HC						
	First Defense Unit -						
1.2	FD-4HC						
6.20							
	Proposed WQ Flow Rate (cfs) 3.8 1.2 1.2						

Pre-Treatment Water Quality Volume

The stormwater management system design calls for the installation of 4-foot-deep sump catch basins with hooded outlets to collect runoff from the proposed roadway, propriety pre-treatment and treatment units, subsurface infiltration chambers, sediment forebay and extended dry detention basin. Removal rates for all paved surfaces are:

Deep Sump Catch Basins	25%
Extended dry detention basin w/ Sediment Forebay	50%

Sediment Forebay Sizing Requirements

Extended Dry Detention Basin	Contributing Impervious	Required Volume ¹	Provided Volume
	Area (ft ²)	(ft ³)	(ft ³)
1P	65,988	550	636

1. Required Volume = Contributing Impervious Area (sq.ft.) x (1 ft./12 in.) x (0.1 in./acre)

The stormwater management system was designed to be in full compliance with the DEP Stormwater Management Policy. A treatment stream consisting of deep sump catch basins with hooded outlets, proprietary pre-treatment and treatment units, subsurface infiltration chambers will be employed in the design of drainage facilities for the project to achieve the required removal of 80% total suspended solids. The proposed treatment streams will renovate the stormwater and improve the water quality by promoting the settlement of sediments and pollutants before runoff is released into down gradient wetlands. Refer to the TSS Removal Worksheets in Appendix D for TSS removal rates.

The drainage system is designed to comply with the Standards of the DEP Stormwater Management Policy. A treatment stream consisting of deep sump catch basins with hooded outlets and a sediment forebay will ensure that the 44% TSS removal (total suspended solids) is removed prior to discharge to the infiltration chambers and to ensure that 80% TSS removal is accomplished. The proposed treatment stream will renovate the stormwater and improve the water quality by promoting the settlement of sediments and pollutants before runoff is released into the existing drainage system. Refer to Appendix D for TSS Removal Calculation Worksheets.

Standard 5 – Land Use with Higher Potential Pollutant Loads (LUHPPL)

The proposed project does not include land uses with higher potential pollutant loads. Not Applicable.

<u>Standard 6 – Critical Areas</u>

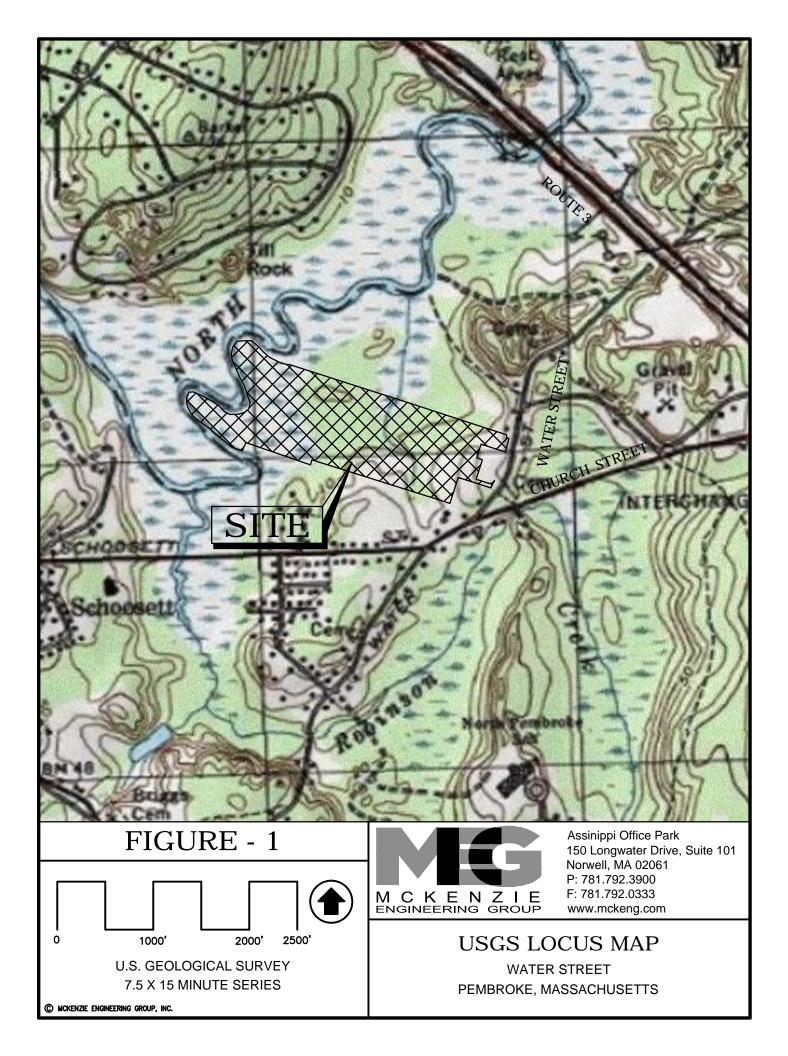
The proposed project does not discharge to any critical areas. Not Applicable.

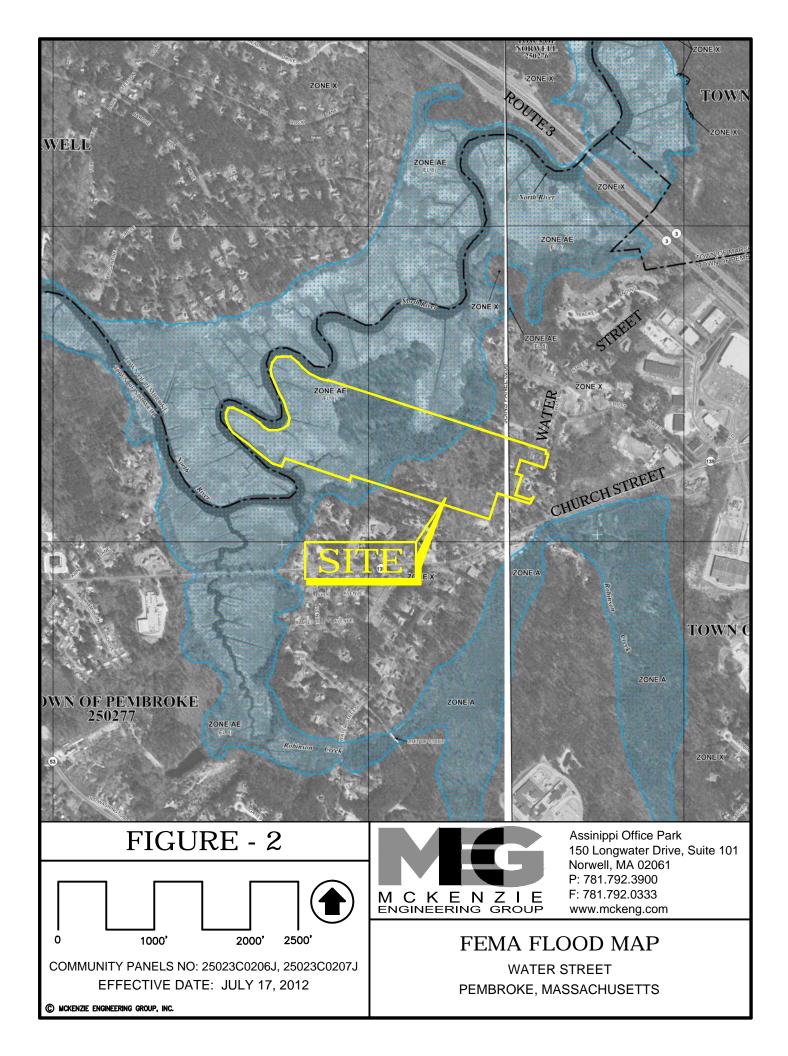
Standard 7 - Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

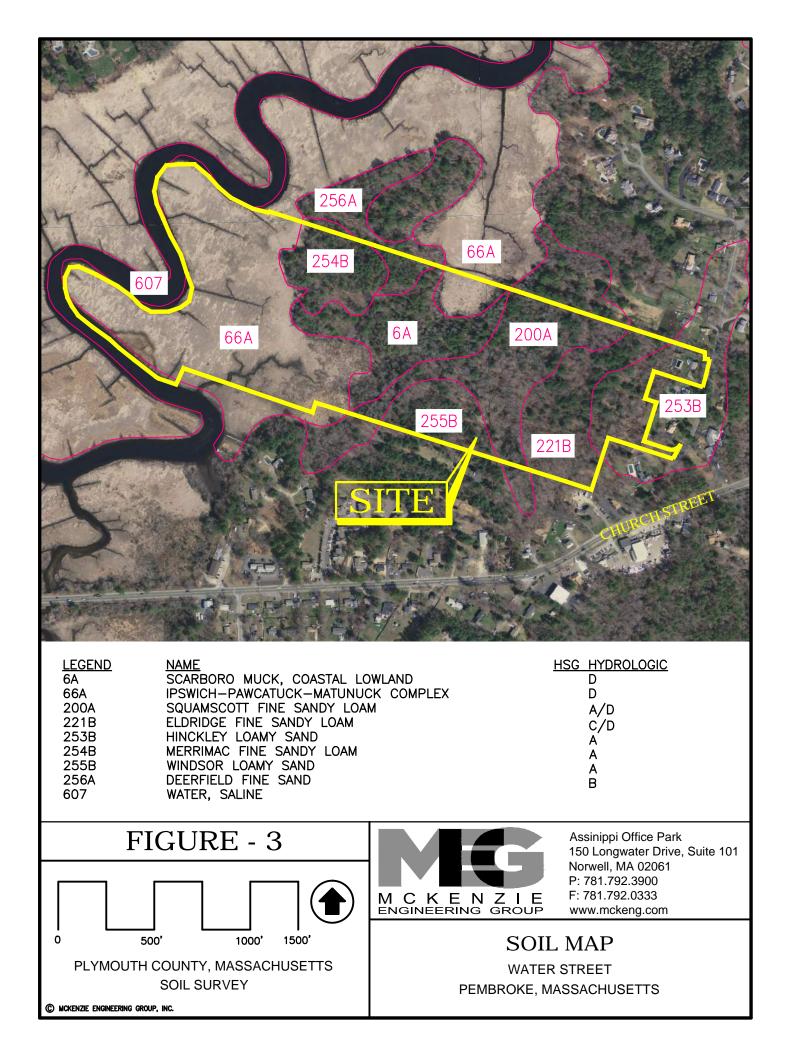
The proposed project is not a redevelopment project. Not Applicable.

<u>Standard 8 – Construction Period Pollution Prevention and Erosion and Sedimentation</u> <u>Control</u>

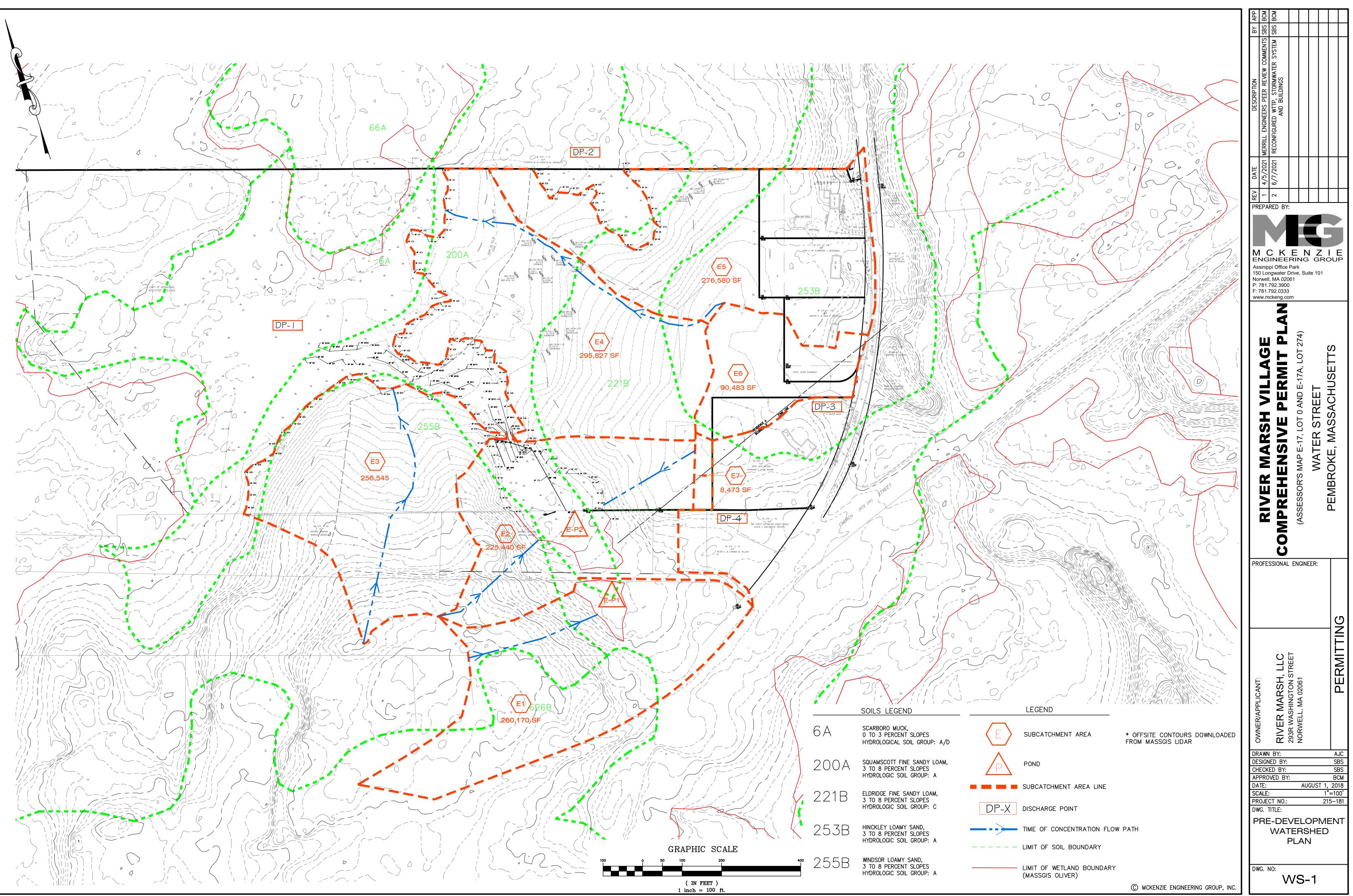
The project will require a NPDES Construction General Permit, but the Stormwater Pollution Prevention Plan (SWPPP) has not been submitted. The SWPPP will be submitted prior to any proposed construction. A Construction Phase BMP Operation and Maintenance Plan will be provided as a basis for the SWPPP during final design.

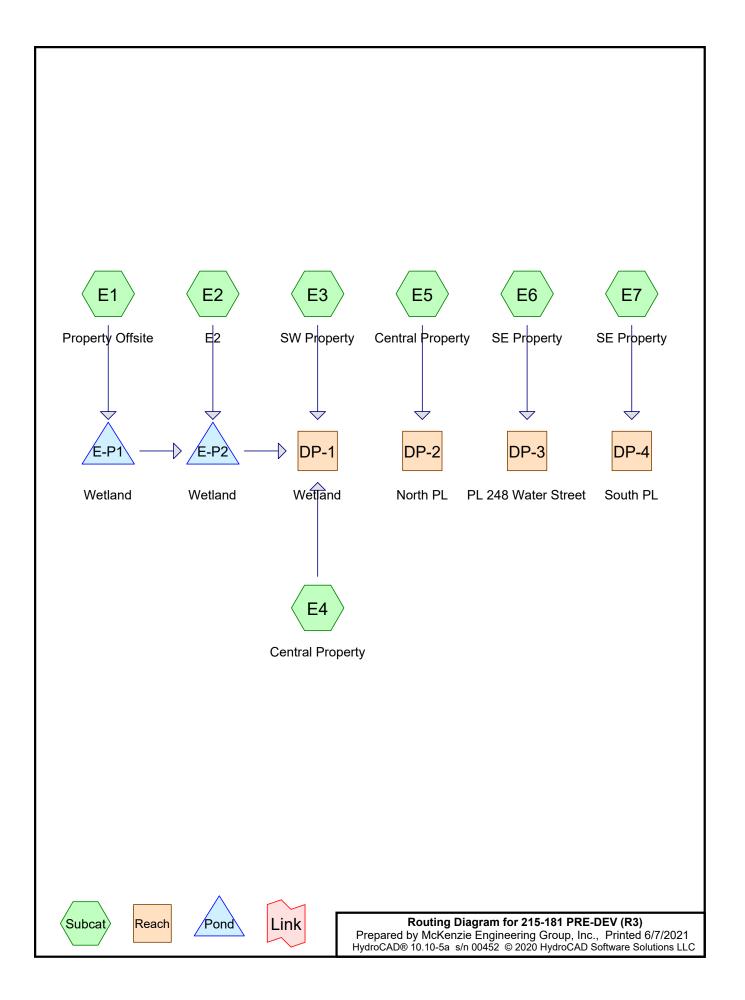

Standard 9 – Operation and Maintenance Plan


The Long-Term Pollution Prevention Plan has been incorporated into the Post-Development Operation and Maintenance Plan. Refer to Appendix F for BMP Operation and Maintenance Plans.


Standard 10 – Prohibition of Illicit Discharges

No illicit discharges are anticipated on site. An Illicit Discharge Compliance Statement will be submitted prior to the discharge of any stormwater to the post-construction best management practices. Measures to prevent illicit discharges will be included in the Long-Term Pollution Prevention Plan.





APPENDIX A

Pre-Development Condition

M: \MEG\2015 PROJECTS\215-181\DWGS\CUT SHEETS\ZBA APPLICATION\SUBMISSION (R3)\215-181 WATERSHED (R3).DWG

215-181 PRE-DEV (R3) Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Ev	ent#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
	1	2-yr	Type III 24-hr		Default	24.00	1	3.40	2
	2	10-yr	Type III 24-hr		Default	24.00	1	4.70	2
	3	25-yr	Type III 24-hr		Default	24.00	1	5.60	2
	4	100-yr	Type III 24-hr		Default	24.00	1	7.00	2

Rainfall Events Listing

215-181 PRE-DEV (R3)

Prepared by McKenzie Engineering Group, Inc.	
HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC	;

Area Listing (all nodes)

Area	CN	Description	
(acres)		(subcatchment-numbers)	
0.270	49	50-75% Grass cover, Fair, HSG A (E6)	
1.370	39	>75% Grass cover, Good, HSG A (OFFSITE) (E5, E6)	
0.627	74	>75% Grass cover, Good, HSG C (E5)	
0.295	98	Impervious, HSG A (OFFSITE) (E3, E5)	
0.018	98	Paved parking, HSG A (E6)	
0.273	98	Paved parking, HSG A (OFFSITE) (E2, E6)	
0.106	98	Paved parking, HSG C (OFFSITE) (E2)	
0.062	98	Pavement, HSG A (E5)	
0.086	98	Pavement, HSG A (OFFSITE) (E5)	
0.046	98	Roofs, HSG A (E5)	
3.277	89	Urban commercial, 85% imp, HSG A (OFFSITE) (E1)	
1.124	94	Urban commercial, 85% imp, HSG C (OFFSITE) (E1)	
0.657	78	Wetlands/woods, HSG A (E2)	
0.199	78	Wetlands/woods, HSG A (OFFSITE) (E1)	
0.136	78	Wetlands/woods, HSG C (E2)	
0.133	78	Wetlands/woods, HSG C (OFFSITE) (E1, E2)	
0.463	78	Wetlands/woods. HSG A (OFFSITE) (E2)	
2.175	30	Woods, Fair, HSG A (OFFSITE) (E3)	
11.731	30	Woods, Good, HSG A (E2, E3, E4, E5, E6)	
2.648	30	Woods, Good, HSG A (OFFSITE) (E1, E2, E5, E6)	
6.054	70	Woods, Good, HSG C (E2, E4, E5, E6, E7)	
0.702	70	Woods, Good, HSG C (OFFSITE) (E1, E2, E6)	
32.450	52	TOTAL AREA	

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
23.569	HSG A	E1, E2, E3, E4, E5, E6
0.000	HSG B	
8.881	HSG C	E1, E2, E4, E5, E6, E7
0.000	HSG D	
0.000	Other	
32.450		TOTAL AREA
0.000	HSG D	

215-181 PRE-DEV (R3)

Prepared by McKenzie E	Engineering Group, Inc.
HydroCAD® 10.10-5a s/n 00	0452 © 2020 HydroCAD Software Solutions LLC

Printed 6/7/2021 Page 5

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.270	0.000	0.000	0.000	0.000	0.270	50-75% Grass cover, Fair	E6
1.370	0.000	0.627	0.000	0.000	1.997	>75% Grass cover, Good	E5,
							E6
0.295	0.000	0.000	0.000	0.000	0.295	Impervious	E3,
							E5
0.291	0.000	0.106	0.000	0.000	0.397	Paved parking	E2,
							E6
0.148	0.000	0.000	0.000	0.000	0.148	Pavement	E5
0.046	0.000	0.000	0.000	0.000	0.046	Roofs	E5
3.277	0.000	1.124	0.000	0.000	4.401	Urban commercial, 85% imp	E1
0.856	0.000	0.269	0.000	0.000	1.126	Wetlands/woods	E1,
							E2
0.463	0.000	0.000	0.000	0.000	0.463	Wetlands/woods.	E2
2.175	0.000	0.000	0.000	0.000	2.175	Woods, Fair	E3
14.379	0.000	6.755	0.000	0.000	21.134	Woods, Good	E1,
							E2,
							E3,
							E4,
							E5,
							E6,
							E7
23.569	0.000	8.881	0.000	0.000	32.450	TOTAL AREA	

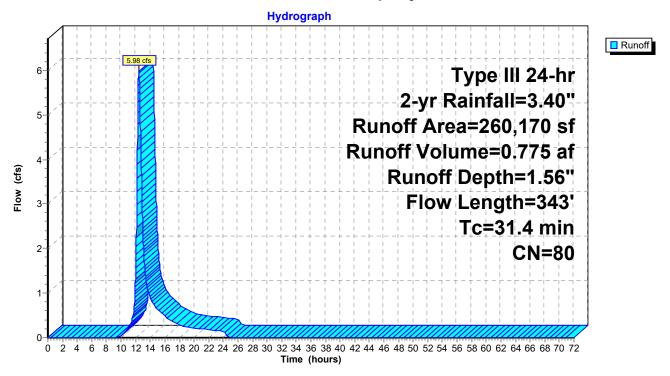
Ground Covers (all nodes)

215-181 PRE-DEV (R3) Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.02 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentE1: Property Offsite	Runoff Area=260,170 sf 62.63% Impervious Runoff Depth=1.56" Flow Length=343' Tc=31.4 min CN=80 Runoff=5.98 cfs 0.775 af
SubcatchmentE2: E2	Runoff Area=225,440 sf 6.06% Impervious Runoff Depth=0.57" Flow Length=319' Tc=21.2 min CN=62 Runoff=1.68 cfs 0.246 af
SubcatchmentE3: SW Property	Runoff Area=256,545 sf 1.84% Impervious Runoff Depth=0.00" Flow Length=683' Tc=13.5 min CN=31 Runoff=0.00 cfs 0.000 af
SubcatchmentE4: Central Property	Runoff Area=295,827 sf 0.00% Impervious Runoff Depth=0.05" Flow Length=808' Tc=17.9 min CN=44 Runoff=0.05 cfs 0.030 af
SubcatchmentE5: Central Property	Runoff Area=276,580 sf 5.99% Impervious Runoff Depth=0.17" Flow Length=808' Tc=17.9 min CN=50 Runoff=0.24 cfs 0.091 af
SubcatchmentE6: SE Property	Runoff Area=90,483 sf 4.01% Impervious Runoff Depth=0.00" Flow Length=290' Tc=13.3 min CN=38 Runoff=0.00 cfs 0.000 af
SubcatchmentE7: SE Property	Runoff Area=8,473 sf 0.00% Impervious Runoff Depth=0.95" Tc=6.0 min CN=70 Runoff=0.20 cfs 0.015 af
Reach DP-1: Wetland	Inflow=1.53 cfs 0.644 af Outflow=1.53 cfs 0.644 af
Reach DP-2: North PL	Inflow=0.24 cfs 0.091 af Outflow=0.24 cfs 0.091 af
Reach DP-3: PL 248 Water Street	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach DP-4: South PL	Inflow=0.20 cfs 0.015 af Outflow=0.20 cfs 0.015 af
Pond E-P1: Wetland	Peak Elev=18.04' Storage=7,800 cf Inflow=5.98 cfs 0.775 af Outflow=5.93 cfs 0.607 af
Pond E-P2: Wetland	Peak Elev=13.02' Storage=15,036 cf Inflow=7.51 cfs 0.853 af Outflow=1.51 cfs 0.614 af

Total Runoff Area = 32.450 acRunoff Volume = 1.158 afAverage Runoff Depth = 0.43"85.74% Pervious = 27.824 ac14.26% Impervious = 4.626 ac

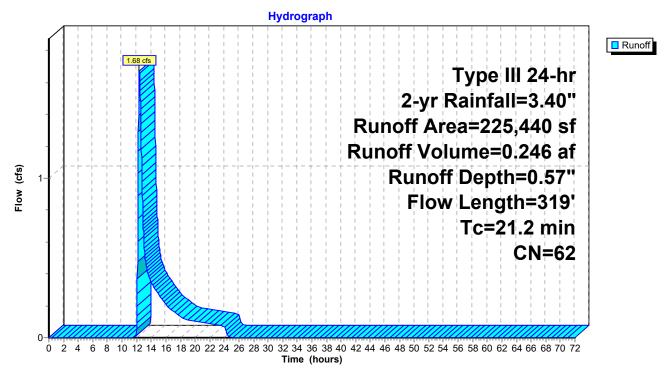

Summary for Subcatchment E1: Property Offsite

Runoff = 5.98 cfs @ 12.45 hrs, Volume= 0.775 af, Depth= 1.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

_	Α	rea (sf)	CN E	escription						
*	1	42,754	89 L	Urban commercial, 85% imp, HSG A (OFFSITE)						
*		31,587	30 V	Noods, Good, HSG A (OFFSITE)						
*		48,943	94 L	Jrban commercial, 85% imp, HSG C (OFFSITE)						
*		8,690	78 V	Wetlands/woods, HSG A (OFFSITE)						
*		25,996	70 V	Voods, Go	od, HSG C	(OFFSITE)				
*		2,200	78 V	Vetlands/w	oods, HSG	C (OFFSITE)				
	2	60,170	80 V	Veighted A	verage					
		97,228	3	7.37% Per	vious Area					
	1	62,942	6	2.63% Imp	pervious Ar	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
				,		Description Sheet Flow, Start				
	(min)	(feet)	(ft/ft)	(ft/sec)		·				
_	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C				
	(min) 22.8 6.6	(feet) 50	(ft/ft) 0.0040 0.0040	(ft/sec) 0.04 0.32		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps				
	(min) 22.8	(feet) 50	(ft/ft) 0.0040	(ft/sec) 0.04		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND				
_	(min) 22.8 6.6	(feet) 50 126	(ft/ft) 0.0040 0.0040	(ft/sec) 0.04 0.32		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps				
_	(min) 22.8 6.6	(feet) 50 126	(ft/ft) 0.0040 0.0040	(ft/sec) 0.04 0.32		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND				

Subcatchment E1: Property Offsite

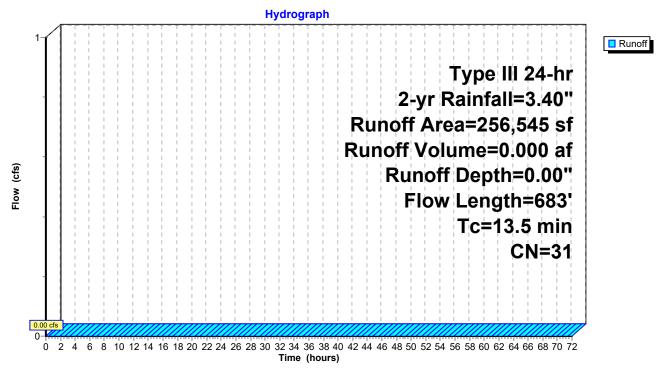

Summary for Subcatchment E2: E2

Runoff = 1.68 cfs @ 12.38 hrs, Volume= 0.246 af, Depth= 0.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

	A	rea (sf)	CN [Description						
*		9,050	98 F	B Paved parking, HSG A (OFFSITE)						
*		49,865	30 \	Woods, Good, HSG A (OFFSITE)						
*		20,149	78 \	Wetlands/woods. HSG A (OFFSITE)						
*		4,604	98 F	Paved parking, HSG C (OFFSITE)						
*		4,156	70 \	Woods, Good, HSG C (OFFSITE)						
*		3,605				G C (OFFSITE)				
		83,652		Woods, Good, HSG C						
*		5,924			oods, HSG					
*		28,611			oods, HSG					
		15,824	30 \	30 Woods, Good, HSG A						
		25,440		Veighted A						
	2	11,786	-		rvious Area					
		13,654	6	6.06% Impe	ervious Are	а				
	_		_ .							
	Tc	Length	Slope		Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	15.8	50	0.0100	0.05		Sheet Flow, START				
						Woods: Light underbrush n= 0.400 P2= 3.40"				
	3.2	95	0.0100	0.50		Shallow Concentrated Flow, B-C				
						Woodland Kv= 5.0 fps				
	2.2	174	0.0710	1.33		Shallow Concentrated Flow, c-WETLAND				
						Woodland Kv= 5.0 fps				
	21.2	319	Total							

Subcatchment E2: E2

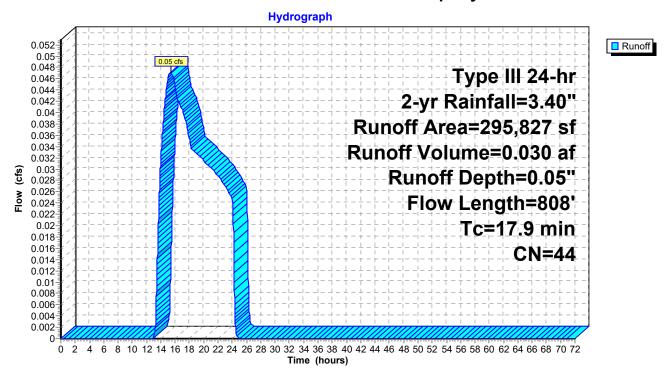

Summary for Subcatchment E3: SW Property

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

	Α	rea (sf)	CN E	Description					
	1	57,110	30 V	Woods, Good, HSG A					
*		94,725	30 V	Woods, Fair, HSG A (OFFSITE)					
*		4,710	98 li	Impervious, HSG A (OFFSITE)					
	2	56,545	31 V	Veighted A	verage				
	2	51,835	g	8.16% Pei	vious Area				
		4,710	1	.84% Impe	ervious Area	а			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.2	50	0.0300	0.08		Sheet Flow, Start Off Property			
						Woods: Light underbrush n= 0.400 P2= 3.40"			
	3.3	633	0.0400	3.22		Shallow Concentrated Flow, To Wetland			
						Unpaved Kv= 16.1 fps			
	13.5	683	Total						

Subcatchment E3: SW Property

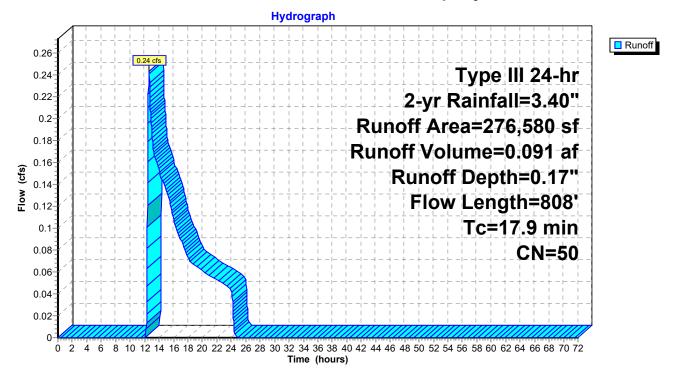

Summary for Subcatchment E4: Central Property

Runoff = 0.05 cfs @ 15.38 hrs, Volume= 0.030 af, Depth= 0.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

A	rea (sf)	CN E	Description		
1	95,082	30 V	Voods, Go	od, HSG A	
1	00,745	70 V	Voods, Go	od, HSG C	
2	95,827	44 V	Veighted A	verage	
2	95,827	1	00.00% Pe	ervious Are	а
Тс	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
13.4	50	0.0150	0.06		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.40"
4.5	758	0.0310	2.83		Shallow Concentrated Flow, B-C
					Unpaved Kv= 16.1 fps
17.9	808	Total			

Subcatchment E4: Central Property

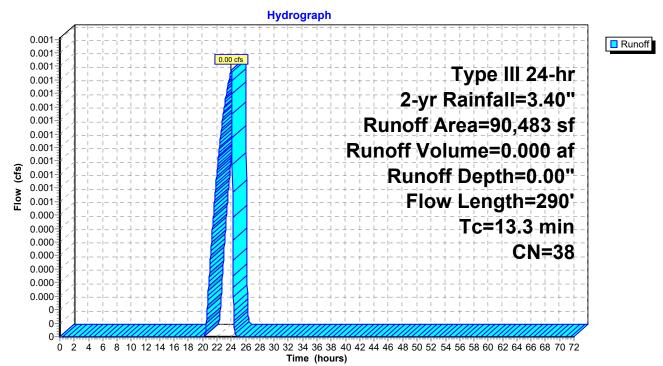

Summary for Subcatchment E5: Central Property

Runoff = 0.24 cfs @ 12.61 hrs, Volume= 0.091 af, Depth= 0.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

	A	rea (sf)	CN	Description				
*		3,765	98	Pavement, HSG A (OFFSITE)				
*		8,121		Impervious				
*		17,970				(OFFSITE)		
*		41,632				bod, HSG Á (OFFSITE)		
		69,621		Woods, Go				
	1	03,483	30	Woods, Go	od, HSG A			
*		2,694	98	Pavement,	HSG A			
*		1,985	98	Roofs, HSG	θA			
		27,309	74	>75% Gras	s cover, Go	bod, HSG C		
	2	76,580	50	Weighted A	verage			
	2	60,015		94.01% Pei	rvious Area	1		
		16,565		5.99% Impervious Area				
	Tc	Length	Slope	e Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	· · · · · · · · · · · · · · · · · · ·		
	13.4	50	0.0150	0.06		Sheet Flow, A-B		
						Woods: Light underbrush n= 0.400 P2= 3.40"		
	4.5	758	0.0310	2.83		Shallow Concentrated Flow, B-C		
						Unpaved Kv= 16.1 fps		
	17.9	808	Total			· · · · · · · · · · · · · · · · · · ·		

Subcatchment E5: Central Property

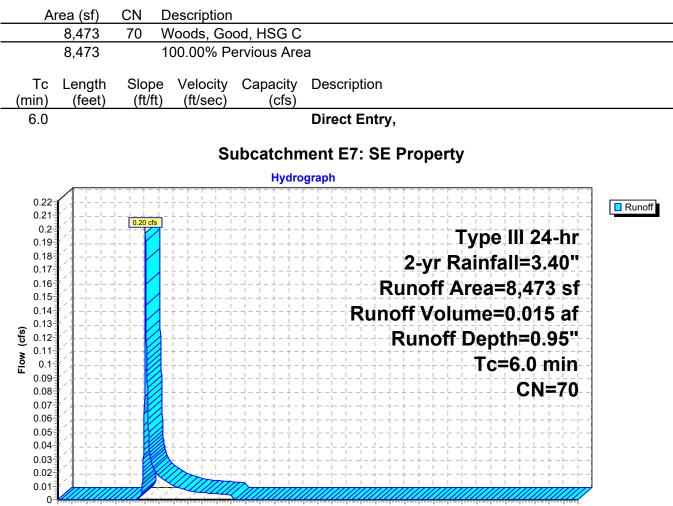


Summary for Subcatchment E6: SE Property

Runoff = 0.00 cfs @ 24.02 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

	Area (sf)	CN [Description			
	39,519	30 \	Voods, Go	od, HSG A		
	1,209	70 \	Voods, Go	od, HSG C		
	11,750	49 5	50-75% Gra	ass cover, l	Fair, HSG A	
	770	98 F	Paved park	ing, HSG A	N Contraction of the second seco	
*	15,917	30 \	Noods, Go	od, HSG A	(OFFSITE)	
*	406	70 \	Noods, Go	od, HSG C	(OFFSITE)	
*	18,054	39 >	>75% Grass cover, Good, HSG A (OFFSITE)			
*	2,858	98 F	Paved park	ing, HSG A	(OFFSITE)	
	90,483	38 \	Veighted A	verage		
	86,855	ç	95.99% Per	vious Area		
	3,628	2	4.01% Impervious Area			
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
11.5	50	0.0220	0.07		Sheet Flow, A-B	
					Woods: Light underbrush n= 0.400 P2= 3.40"	
1.8	240	0.0200	2.28		Shallow Concentrated Flow, B-C	
					Unpaved Kv= 16.1 fps	
13.3	290	Total				



Subcatchment E6: SE Property

Summary for Subcatchment E7: SE Property

Runoff = 0.20 cfs @ 12.10 hrs, Volume= 0.015 af, Depth= 0.95"

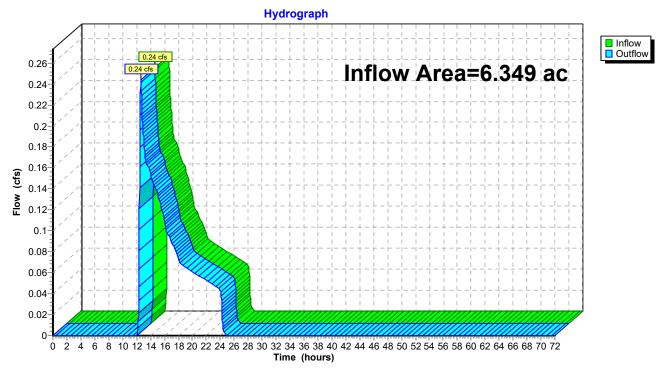
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Reach DP-1: Wetland

Inflow Area =	23.829 ac, 17.47% Impervious, Inflow	Depth > 0.32" for 2-yr event
Inflow =	1.53 cfs @ 13.64 hrs, Volume=	0.644 af
Outflow =	1.53 cfs @13.64 hrs, Volume=	0.644 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs

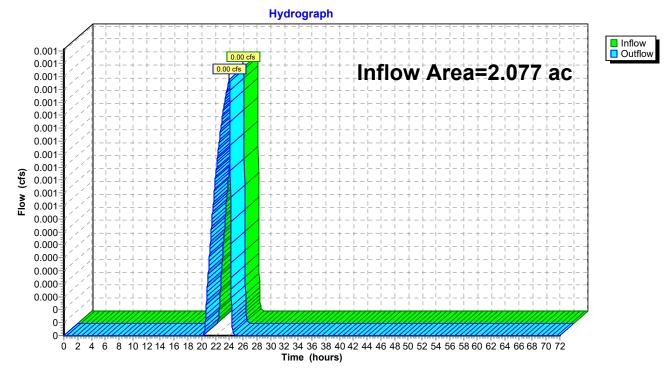


Reach DP-1: Wetland

Summary for Reach DP-2: North PL

Inflow Area =	6.349 ac,	5.99% Impervious, Inflow D	epth = 0.17" for 2-yr event	
Inflow =	0.24 cfs @	12.61 hrs, Volume=	0.091 af	
Outflow =	0.24 cfs @	12.61 hrs, Volume=	0.091 af, Atten= 0%, Lag= 0.0	0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs

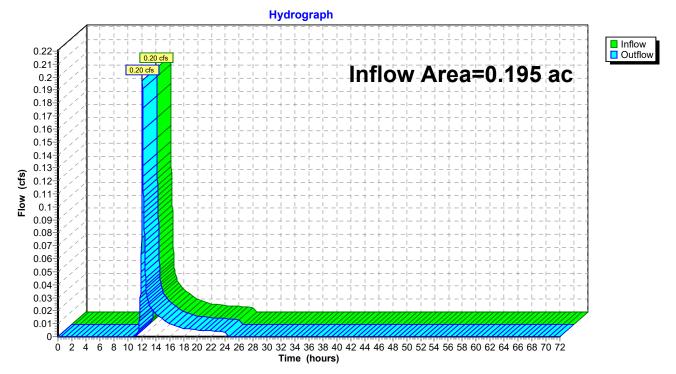


Reach DP-2: North PL

Summary for Reach DP-3: PL 248 Water Street

Inflow Area =		2.077 ac,	4.01% Impervious, Infle	ow Depth = 0.00"	for 2-yr event
Inflow	=	0.00 cfs @	24.02 hrs, Volume=	0.000 af	-
Outflow	=	0.00 cfs @	24.02 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs


Reach DP-3: PL 248 Water Street

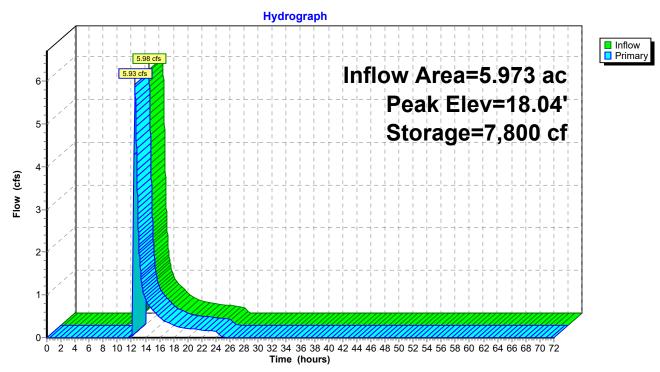
Summary for Reach DP-4: South PL

Inflow Area =		0.195 ac,	0.00% Impervious, Ir	nflow Depth = 0.95"	for 2-yr event
Inflow	=	0.20 cfs @	12.10 hrs, Volume=	0.015 af	-
Outflow	=	0.20 cfs @	12.10 hrs, Volume=	0.015 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs

Reach DP-4: South PL

Summary for Pond E-P1: Wetland


Inflow Area =	5.973 ac, 62.63% Impervious, Inflow	Depth = 1.56" for 2-yr event
Inflow =	5.98 cfs @ 12.45 hrs, Volume=	0.775 af
Outflow =	5.93 cfs @ 12.49 hrs, Volume=	0.607 af, Atten= 1%, Lag= 2.0 min
Primary =	5.93 cfs @ 12.49 hrs, Volume=	0.607 af

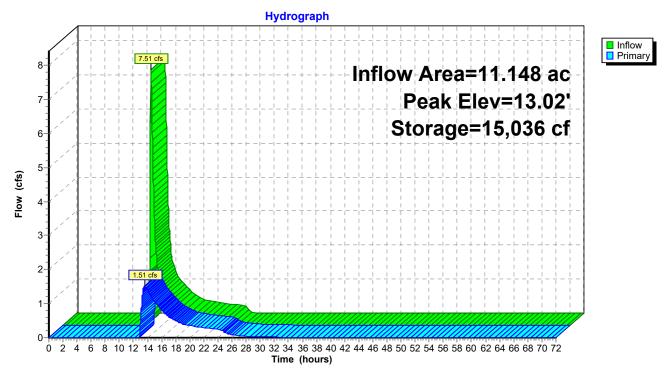
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 18.04' @ 12.49 hrs Surf.Area= 12,886 sf Storage= 7,800 cf

Plug-Flow detention time= 125.2 min calculated for 0.607 af (78% of inflow) Center-of-Mass det. time= 41.8 min (905.0 - 863.2)

Volume	Ir	vert	Avail.Sto	orage	Storage	Description					
#1	17	7.00'	236,2	53 cf	Custom	Stage Data (P	rismatic)L	isted bel	ow (Red	calc)	
Flave ti		Cumf	A		01	Ourse Otherse					
Elevation Surf.Area			.Store	Cum.Store							
(fee	et)	(s	sq-ft)	(cubi	c-feet)	(cubic-feet)					
17.0	00	2	,349		0	0					
18.0	00	12	,281		7,315	7,315					
19.0	00	27	,986	2	20,134	27,449					
20.0	00	37,607		3	32,797	60,245					
21.0	00	49,582 66,971		4	13,595	103,840					
22.0	00			58,277		162,116					
23.0	00	81,302		7	74,137	236,253					
Device	Routin	a	Invert	Outl	et Device	S					
		0		-			-				
#1	Primar	y	18.00'			al Weir, C= 3.27					
				Offs	et (feet)	0.00 10.80 18.	43 23.94	57.50 8	6.92 28	37.08 357	.73
				427.	57 483.9	5 528.04 555.	94				
				Elev	(feet) 2	23.00 22.00 21	.00 20.00	19.00 1	18.00 1	8.00 19.0	0
					()	22.00 23.00					-
				20.0	0 21.00	22.00 20.00					

Primary OutFlow Max=4.98 cfs @ 12.49 hrs HW=18.04' (Free Discharge) 1=Asymmetrical Weir (Weir Controls 4.98 cfs @ 0.63 fps) Pond E-P1: Wetland

Summary for Pond E-P2: Wetland


Inflow Area =	11.148 ac, 36.37% Impervious, Inflow I	Depth = 0.92" for 2-yr event
Inflow =	7.51 cfs @ 12.48 hrs, Volume=	0.853 af
Outflow =	1.51 cfs @ 13.62 hrs, Volume=	0.614 af, Atten= 80%, Lag= 68.4 min
Primary =	1.51 cfs @ 13.62 hrs, Volume=	0.614 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 13.02' @ 13.62 hrs Surf.Area= 27,403 sf Storage= 15,036 cf

Plug-Flow detention time= 264.1 min calculated for 0.614 af (72% of inflow) Center-of-Mass det. time= 161.3 min (1,069.7 - 908.3)

Volume	١n	vert Avai	I.Storage	Storage	Description			
#1	12.	00'	47,617 cf	Custom	n Stage Data (Pri	i smatic) Listed b	pelow (Recalc)	
Elevatio (fee 12.0 13.0 14.0	et) 00 00	Surf.Area (sq-ft) 1,826 27,167 39,073	(cubi	.Store <u>c-feet)</u> 0 14,497 33,120	Cum.Store (cubic-feet) 0 14,497 47,617			
Device	Routing	l In	vert Outl	et Device	es			
#1	Primary	⁷ 12	Offs 131.	et (feet) 31 . (feet)	al Weir, C= 3.27 0.00 13.92 43.4 14.00 13.56 13.4			

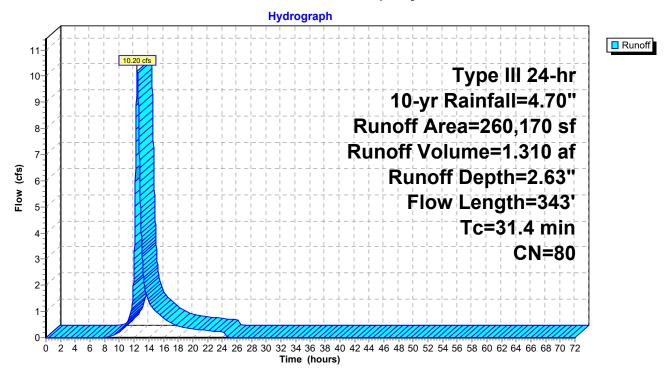
Primary OutFlow Max=1.51 cfs @ 13.62 hrs HW=13.02' (Free Discharge) **1=Asymmetrical Weir** (Weir Controls 1.51 cfs @ 0.57 fps) Pond E-P2: Wetland

215-181 PRE-DEV (R3)	Type III 24-hr	10-yr Rainfall=4.70"
Prepared by McKenzie Engineering Group, Inc.		Printed 6/7/2021
HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions L	LC	Page 26

Time span=0.00-72.00 hrs, dt=0.02 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentE1: Property Offsite	Runoff Area=260,170 sf 62.63% Impervious Runoff Depth=2.63" Flow Length=343' Tc=31.4 min CN=80 Runoff=10.20 cfs 1.310 af
SubcatchmentE2: E2	Runoff Area=225,440 sf 6.06% Impervious Runoff Depth=1.26" Flow Length=319' Tc=21.2 min CN=62 Runoff=4.50 cfs 0.542 af
SubcatchmentE3: SW Property	Runoff Area=256,545 sf 1.84% Impervious Runoff Depth=0.00" Flow Length=683' Tc=13.5 min CN=31 Runoff=0.01 cfs 0.001 af
SubcatchmentE4: Central Property	Runoff Area=295,827 sf 0.00% Impervious Runoff Depth=0.31" Flow Length=808' Tc=17.9 min CN=44 Runoff=0.66 cfs 0.177 af
SubcatchmentE5: Central Property	Runoff Area=276,580 sf 5.99% Impervious Runoff Depth=0.57" Flow Length=808' Tc=17.9 min CN=50 Runoff=1.79 cfs 0.304 af
SubcatchmentE6: SE Property	Runoff Area=90,483 sf 4.01% Impervious Runoff Depth=0.12" Flow Length=290' Tc=13.3 min CN=38 Runoff=0.03 cfs 0.020 af
SubcatchmentE7: SE Property	Runoff Area=8,473 sf 0.00% Impervious Runoff Depth=1.82" Tc=6.0 min CN=70 Runoff=0.40 cfs 0.029 af
Reach DP-1: Wetland	Inflow=10.20 cfs 1.623 af Outflow=10.20 cfs 1.623 af
Reach DP-2: North PL	Inflow=1.79 cfs 0.304 af Outflow=1.79 cfs 0.304 af
Reach DP-3: PL 248 Water Street	Inflow=0.03 cfs 0.020 af Outflow=0.03 cfs 0.020 af
Reach DP-4: South PL	Inflow=0.40 cfs 0.029 af Outflow=0.40 cfs 0.029 af
Pond E-P1: Wetland	Peak Elev=18.06' Storage=8,052 cf Inflow=10.20 cfs 1.310 af Outflow=10.18 cfs 1.143 af
Pond E-P2: Wetland	Peak Elev=13.20' Storage=20,172 cf Inflow=14.31 cfs 1.685 af Outflow=9.66 cfs 1.445 af

Total Runoff Area = 32.450 ac Runoff Volume = 2.384 af Average Runoff Depth = 0.88" 85.74% Pervious = 27.824 ac 14.26% Impervious = 4.626 ac

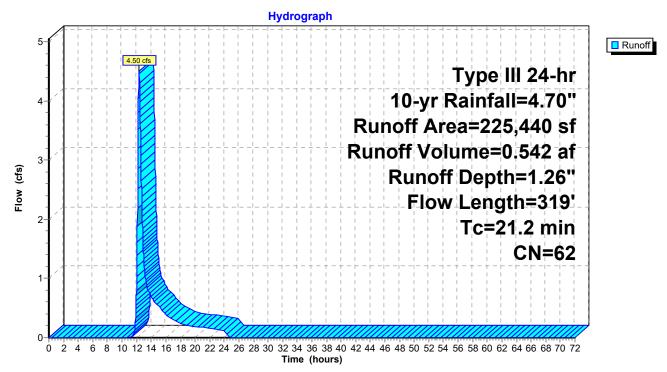

Summary for Subcatchment E1: Property Offsite

Runoff = 10.20 cfs @ 12.44 hrs, Volume= 1.310 af, Depth= 2.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

_	Α	rea (sf)	CN E	escription							
*	1	42,754	89 L	Urban commercial, 85% imp, HSG A (OFFSITE)							
*		31,587	30 V	Noods, Good, HSG A (OFFSITE)							
*		48,943	94 L	Irban comr	mercial, 85 ^o	% imp, HSG C (OFFSITE)					
*		8,690	78 V	Vetlands/w	oods, HSG	A (OFFSITE)					
*		25,996	70 V	Voods, Go	od, HSG C	(OFFSITE)					
*		2,200	78 V	Vetlands/w	oods, HSG	G C (OFFSITE)					
	2	60,170	80 V	Veighted A	verage						
		97,228	3	7.37% Per	vious Area						
	1	62,942	6	2.63% Imp	pervious Ar	ea					
	Тс	Length	Slope	Velocity	Capacity	Description					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
						Description Sheet Flow, Start					
	(min)	(feet)	(ft/ft)	(ft/sec)							
_	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C					
	(min) 22.8 6.6	(feet) 50	(ft/ft) 0.0040 0.0040	(ft/sec) 0.04 0.32		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps					
	(min) 22.8	(feet) 50	(ft/ft) 0.0040	(ft/sec) 0.04		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND					
	(min) 22.8 6.6	(feet) 50 126	(ft/ft) 0.0040 0.0040	(ft/sec) 0.04 0.32		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps					
_	(min) 22.8 6.6	(feet) 50 126	(ft/ft) 0.0040 0.0040	(ft/sec) 0.04 0.32		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND					

Subcatchment E1: Property Offsite

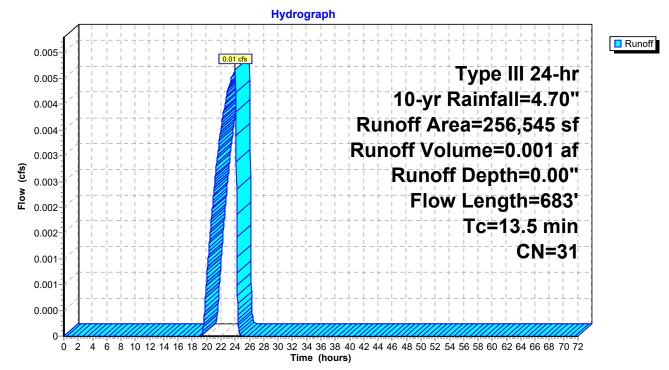

Summary for Subcatchment E2: E2

Runoff = 4.50 cfs @ 12.33 hrs, Volume= 0.542 af, Depth= 1.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

	A	rea (sf)	CN [Description						
*		9,050	98 F	Paved park	ing, HSG A	(OFFSITE)				
*		49,865	30 \	Woods, Good, HSG A (OFFSITE)						
*		20,149	78 \	Vetlands/w	oods. HSG	A (OFFSITE)				
*		4,604				C (OFFSITE)				
*		4,156				(OFFSITE)				
*		3,605				GC (OFFSITE)				
		83,652		,	od, HSG C					
*		5,924			oods, HSG					
*		28,611			voods, HSG					
_		15,824	30 \	Voods, Go	od, HSG A					
		25,440		Veighted A						
	2	11,786	ę	93.94% Pei	rvious Area					
		13,654	6	6.06% Imp€	ervious Are	а				
	_									
	Tc	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	15.8	50	0.0100	0.05		Sheet Flow, START				
						Woods: Light underbrush n= 0.400 P2= 3.40"				
	3.2	95	0.0100	0.50		Shallow Concentrated Flow, B-C				
						Woodland Kv= 5.0 fps				
	2.2	174	0.0710	1.33		Shallow Concentrated Flow, c-WETLAND				
						Woodland Kv= 5.0 fps				
	21.2	319	Total							

Subcatchment E2: E2

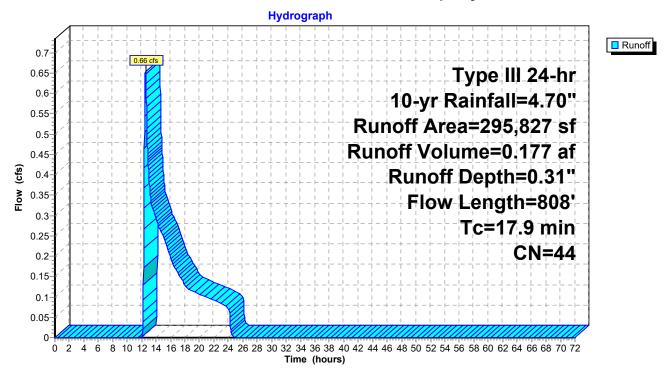

Summary for Subcatchment E3: SW Property

Runoff = 0.01 cfs @ 24.02 hrs, Volume= 0.001 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

_	A	rea (sf)	CN E	Description						
	1	57,110	30 V	Woods, Good, HSG A						
*		94,725	30 V	Voods, Fai	r, HSG A (0	OFFSITE)				
*		4,710	98 I	mpervious,	HSG A (Ò	FFSITE)				
	2	56,545	31 V	Veighted A	verage					
	2	51,835	ç	8.16% Pei	vious Area					
		4,710	1	.84% Impe	ervious Area	a				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.2	50	0.0300	0.08		Sheet Flow, Start Off Property				
						Woods: Light underbrush n= 0.400 P2= 3.40"				
	3.3	633	0.0400	3.22		Shallow Concentrated Flow, To Wetland				
_						Unpaved Kv= 16.1 fps				
	13.5	683	Total							

Subcatchment E3: SW Property

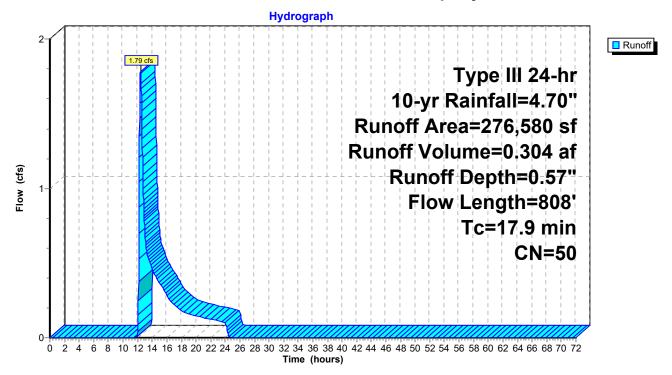

Summary for Subcatchment E4: Central Property

Runoff = 0.66 cfs @ 12.55 hrs, Volume= 0.177 af, Depth= 0.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

_	A	rea (sf)	CN E	Description				
195,082 30 Woods, Good, HSG A								
_	100,745 70 Woods, Good, HSG C							
	2	95,827	44 V	Veighted A	verage			
	2	95,827	1	00.00% Pe	ervious Are	а		
	Тс	Length	Slope		Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	13.4	50	0.0150	0.06		Sheet Flow, A-B		
						Woods: Light underbrush n= 0.400 P2= 3.40"		
	4.5	758	0.0310	2.83		Shallow Concentrated Flow, B-C		
_						Unpaved Kv= 16.1 fps		
_	17 9	808	Total					

Subcatchment E4: Central Property


Summary for Subcatchment E5: Central Property

Runoff = 1.79 cfs @ 12.40 hrs, Volume= 0.304 af, Depth= 0.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

	A	rea (sf)	CN	Description						
*		3,765	98	Pavement, HSG A (OFFSITE)						
*		8,121	98	Impervious,	, HSG A`(O)FFSITÉ)				
*		17,970	30	Woods, Go	od, HSG Â	(OFFSITE)				
*		41,632	39	>75% Gras	s cover, Go	bod, HSG Á (OFFSITE)				
		69,621	70	Woods, Go	od, HSG C					
	1	03,483	30	Woods, Go	od, HSG A					
*		2,694	98	Pavement,	HSG A					
*		1,985	98	Roofs, HSC	βA					
_		27,309	74	>75% Gras	s cover, Go	bod, HSG C				
	2	76,580	50	Weighted A	verage					
	2	60,015		94.01% Per	vious Area	1				
		16,565		5.99% Impe	ervious Are	a				
	Тс	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	13.4	50	0.0150	0.06		Sheet Flow, A-B				
						Woods: Light underbrush n= 0.400 P2= 3.40"				
	4.5	758	0.0310	2.83		Shallow Concentrated Flow, B-C				
						Unpaved Kv= 16.1 fps				
	17.9	808	Total							

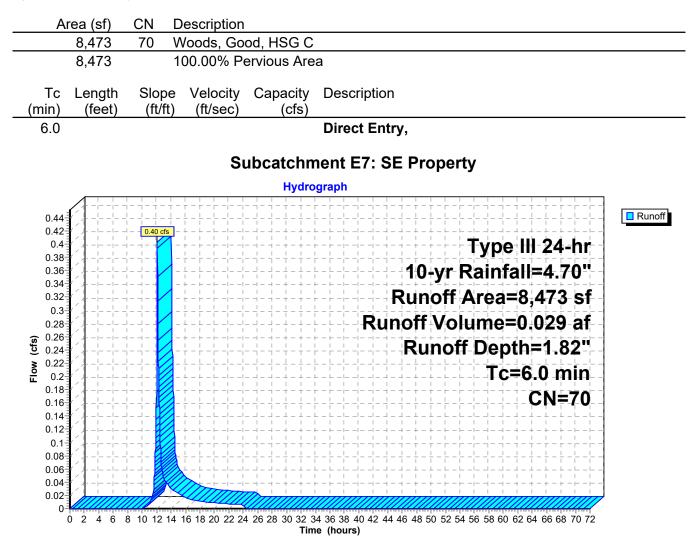
Subcatchment E5: Central Property

Summary for Subcatchment E6: SE Property

Runoff = 0.03 cfs @ 14.82 hrs, Volume= 0.020 af, Depth= 0.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

A	Area (sf)	CN E	Description						
	39,519	30 V	Voods, Go	od, HSG A					
	1,209	70 V	Voods, Good, HSG C						
	11,750	49 5	50-75% Grass cover, Fair, HSG A						
	770	98 F	Paved parking, HSG A						
*	15,917	30 V	Noods, Go	od, HSG A	(OFFSITE)				
*	406	70 V	Noods, Go	od, HSG C	(OFFSITE)				
*	18,054				ood, HSG A (OFFSITE)				
*	2,858	98 F	Paved park	ing, HSG A	(OFFSITE)				
	90,483	38 V	Veighted A	verage					
	86,855	ç	95.99% Per	vious Area					
	3,628	4	1.01% Impe	ervious Are	а				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
11.5	50	0.0220	0.07		Sheet Flow, A-B				
					Woods: Light underbrush n= 0.400 P2= 3.40"				
1.8	240	0.0200	2.28		Shallow Concentrated Flow, B-C				
					Unpaved Kv= 16.1 fps				
13.3	290	Total							


Hydrograph 0.036 Runoff 0.034 0.03 cfs Type III 24-hr 0.032 0.03 10-yr Rainfall=4.70" 0.028 Runoff Area=90,483 sf 0.026 0.024 Runoff Volume=0.020 af 0.022 Runoff Depth=0.12" Flow (cfs) 0.02 0.018 Flow Length=290' 0.016 0.014 Tc=13.3 min 0.012 CN=38 0.01 0.008 0.006 0.004 0.002 0-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Subcatchment E6: SE Property

Summary for Subcatchment E7: SE Property

Runoff = 0.40 cfs @ 12.09 hrs, Volume= 0.029 af, Depth= 1.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

Summary for Reach DP-1: Wetland

Inflow Area	a =	23.829 ac, 17.47% Impervious, Inflow Depth = 0.82" for 10-yr event
Inflow	=	0.20 cfs @ 12.71 hrs, Volume= 1.623 af
Outflow	=	0.20 cfs @ 12.71 hrs, Volume= 1.623 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs

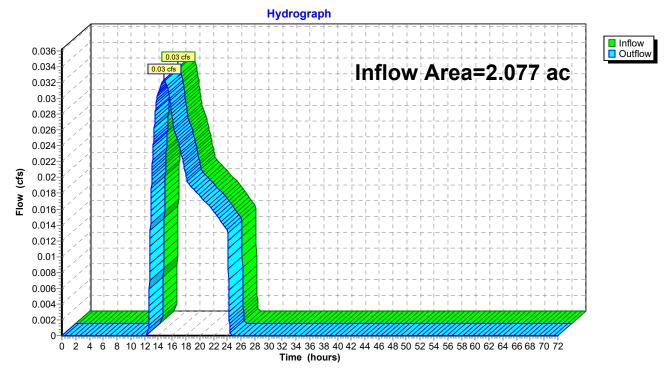
Hydrograph Inflow Outflow 10.20 cfs 11 Inflow Area=23.829 ac 10.20 cfs 10-9-8-7 Flow (cfs) 6-5-4 3-2 1 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Reach DP-1: Wetland

Summary for Reach DP-2: North PL

Inflow Area =	6.349 ac,	5.99% Impervious, Inflow	/ Depth = 0.57"	for 10-yr event
Inflow =	1.79 cfs @	12.40 hrs, Volume=	0.304 af	-
Outflow =	1.79 cfs @	12.40 hrs, Volume=	0.304 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs

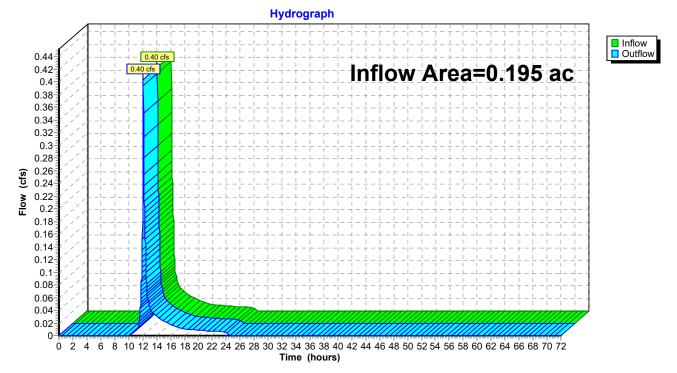

Hydrograph Inflow Outflow 2 1.79 cfs Inflow Area=6.349 ac 1.79 cfs Flow (cfs) 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Reach DP-2: North PL

Summary for Reach DP-3: PL 248 Water Street

Inflow Area =	2.077 ac,	4.01% Impervious, Inflow D	epth = 0.12" for 10-yr event
Inflow =	0.03 cfs @	14.82 hrs, Volume=	0.020 af
Outflow =	0.03 cfs @	14.82 hrs, Volume=	0.020 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs


Reach DP-3: PL 248 Water Street

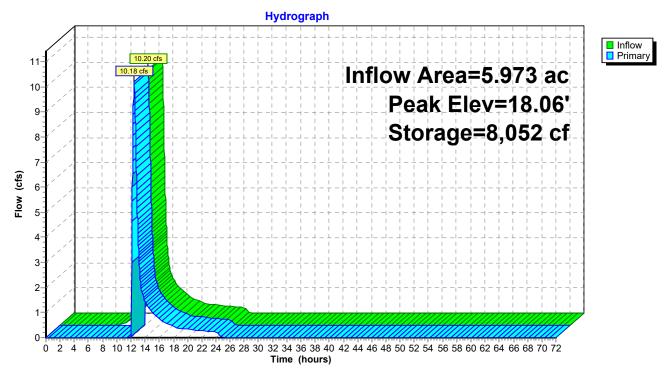
Summary for Reach DP-4: South PL

Inflow Area =	0.195 ac,	0.00% Impervious, Inflow	Depth = 1.82"	for 10-yr event
Inflow =	0.40 cfs @	12.09 hrs, Volume=	0.029 af	-
Outflow =	0.40 cfs @	12.09 hrs, Volume=	0.029 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs

Reach DP-4: South PL

Summary for Pond E-P1: Wetland


Inflow Area =	5.973 ac, 62.63% Impervious, Inflow	Depth = 2.63" for 10-yr event
Inflow =	10.20 cfs @ 12.44 hrs, Volume=	1.310 af
Outflow =	10.18 cfs @ 12.46 hrs, Volume=	1.143 af, Atten= 0%, Lag= 0.9 min
Primary =	10.18 cfs @ 12.46 hrs, Volume=	1.143 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 18.06' @ 12.46 hrs Surf.Area= 13,190 sf Storage= 8,052 cf

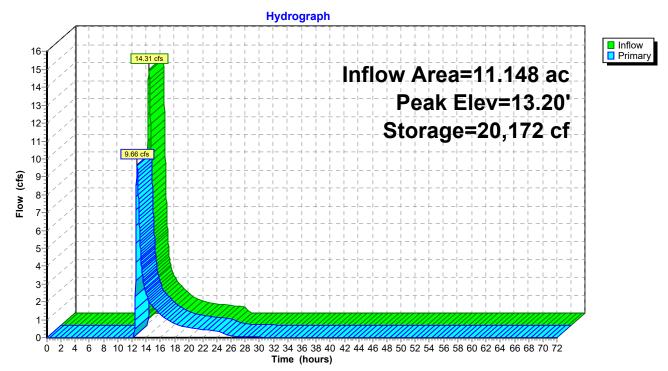
Plug-Flow detention time= 84.8 min calculated for 1.143 af (87% of inflow) Center-of-Mass det. time= 26.5 min (874.5 - 848.0)

Volume	In	vert	Avail.Sto	rage	Storage	Description					
#1	17	.00'	236,2	53 cf	Custom	n Stage Data (Prismatic)	Listed be	low (Re	ecalc)	
_					<u>.</u>						
Elevatio		Surf.A	Area		Store	Cum.Store	-				
(fee	t)	(so	q-ft)	(cubio	c-feet)	(cubic-feet	<u>)</u>				
17.0	0	2,	349		0	(C				
18.0	0	12,	281		7,315	7,31	5				
19.0	0	27,986 37,607 49,582 66,971		2	20,134	27,44	9				
20.0	0			3	32,797	60,24	5				
21.0	0			4	13,595	103,840					
22.0	0			5	58,277	162,110	6				
23.0	00	81,302		7	74,137	236,25	3				
Device	Routing	3	Invert	Outle	et Device	s					
#1	Primary	/	18.00'	Asv	mmetrica	al Weir, C= 3.	27				
						0.00 10.80 18		57.50 8	36.92 2	287.08 3	357.73
						5 528.04 55					
				Elev	. (feet) 2	23.00 22.00 2	21.00 20.00	0 19.00	18.00	18.00 1	9.00
					· · ·	22.00 23.00					

Primary OutFlow Max=9.21 cfs @ 12.46 hrs HW=18.06' (Free Discharge) 1=Asymmetrical Weir (Weir Controls 9.21 cfs @ 0.77 fps) Pond E-P1: Wetland

Summary for Pond E-P2: Wetland

Inflow Area =	11.148 ac, 36.37% Impervious, Inflow	Depth = 1.81" for 10-yr event
Inflow =	14.31 cfs @ 12.41 hrs, Volume=	1.685 af
Outflow =	9.66 cfs @ 12.72 hrs, Volume=	1.445 af, Atten= 32%, Lag= 18.2 min
Primary =	9.66 cfs @ 12.72 hrs, Volume=	1.445 af


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 13.20' @ 12.72 hrs Surf.Area= 29,550 sf Storage= 20,172 cf

Plug-Flow detention time= 143.4 min calculated for 1.445 af (86% of inflow) Center-of-Mass det. time= 80.8 min (959.6 - 878.8)

Volume	Inv	ert Avail.St	orage Stora	age Description
#1	12.	00' 47,6	617 cf Custo	tom Stage Data (Prismatic)Listed below (Recalc)
Elevatio (fee 12.0 13.0 14.0	et) 00 00	Surf.Area (sq-ft) 1,826 27,167 39,073	Inc.Store (cubic-feet) 0 14,497 33,120) (cubic-feet)) 0 7 14,497
Device	Routing	Invert	Outlet Devi	vices
#1	Primary	12.83	Offset (feet 131.31	rical Weir, C= 3.27 et) 0.00 13.92 43.45 57.57 61.89 74.87 84.88 105.86 et) 14.00 13.56 13.12 13.03 12.83 13.08 13.85 13.88

Primary OutFlow Max=9.65 cfs @ 12.72 hrs HW=13.20' (Free Discharge) **1=Asymmetrical Weir** (Weir Controls 9.65 cfs @ 1.02 fps)

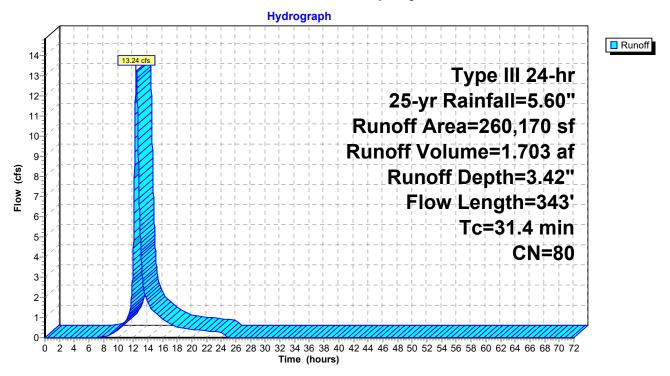
Pond E-P2: Wetland

215-181 PRE-DEV (R3)	Type III 24-hr 25-yr Rainfall=5.60"
Prepared by McKenzie Engineering Group, Inc.	Printed 6/7/2021
HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions L	LC Page 46

Time span=0.00-72.00 hrs, dt=0.02 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentE1: Property Offsite	Runoff Area=260,170 sf 62.63% Impervious Runoff Depth=3.42" Flow Length=343' Tc=31.4 min CN=80 Runoff=13.24 cfs 1.703 af
SubcatchmentE2: E2	Runoff Area=225,440 sf 6.06% Impervious Runoff Depth=1.82" Flow Length=319' Tc=21.2 min CN=62 Runoff=6.85 cfs 0.786 af
SubcatchmentE3: SW Property	Runoff Area=256,545 sf 1.84% Impervious Runoff Depth=0.06" Flow Length=683' Tc=13.5 min CN=31 Runoff=0.04 cfs 0.028 af
SubcatchmentE4: Central Property	Runoff Area=295,827 sf 0.00% Impervious Runoff Depth=0.59" Flow Length=808' Tc=17.9 min CN=44 Runoff=1.79 cfs 0.335 af
SubcatchmentE5: Central Property	Runoff Area=276,580 sf 5.99% Impervious Runoff Depth=0.95" Flow Length=808' Tc=17.9 min CN=50 Runoff=3.68 cfs 0.504 af
SubcatchmentE6: SE Property	Runoff Area=90,483 sf 4.01% Impervious Runoff Depth=0.29" Flow Length=290' Tc=13.3 min CN=38 Runoff=0.15 cfs 0.051 af
SubcatchmentE7: SE Property	Runoff Area=8,473 sf 0.00% Impervious Runoff Depth=2.49" Tc=6.0 min CN=70 Runoff=0.56 cfs 0.040 af
Reach DP-1: Wetland	Inflow=18.26 cfs 2.444 af Outflow=18.26 cfs 2.444 af
Reach DP-2: North PL	Inflow=3.68 cfs 0.504 af Outflow=3.68 cfs 0.504 af
Reach DP-3: PL 248 Water Street	Inflow=0.15 cfs 0.051 af Outflow=0.15 cfs 0.051 af
Reach DP-4: South PL	Inflow=0.56 cfs 0.040 af Outflow=0.56 cfs 0.040 af
Pond E-P1: Wetland	Peak Elev=18.07' Storage=8,236 cf Inflow=13.24 cfs 1.703 af Outflow=13.22 cfs 1.535 af
Pond E-P2: Wetland	Peak Elev=13.28' Storage=22,622 cf Inflow=19.44 cfs 2.321 af Outflow=16.65 cfs 2.082 af

Total Runoff Area = 32.450 ac Runoff Volume = 3.447 af Average Runoff Depth = 1.27" 85.74% Pervious = 27.824 ac 14.26% Impervious = 4.626 ac

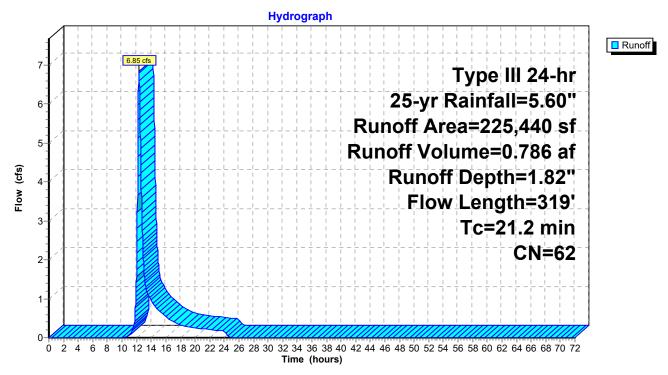

Summary for Subcatchment E1: Property Offsite

Runoff = 13.24 cfs @ 12.44 hrs, Volume= 1.703 af, Depth= 3.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

_	Α	rea (sf)	CN E	escription								
*	1	42,754	89 L	89 Urban commercial, 85% imp, HSG A (OFFSITE)								
*		31,587	30 V	Woods, Good, HSG A (OFFSITE)								
*		48,943	94 L	Irban comi	mercial, 85 ^o	% imp, HSG C (OFFSITE)						
*		8,690	78 V	Vetlands/w	oods, HSG	A (OFFSITE)						
*		25,996	70 V	Voods, Go	od, HSG C	(OFFSITE)						
*		2,200	78 V	Vetlands/w	oods, HSG	C (OFFSITE)						
	2	60,170	80 V	Veighted A	verage							
		97,228	3	7.37% Per	vious Area							
	1	62,942	6	2.63% Imp	pervious Ar	ea						
	Тс	Length	Slope	Velocity	Capacity	Description						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
				,		Description Sheet Flow, Start						
	(min)	(feet)	(ft/ft)	(ft/sec)		·						
_	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C						
	(min) 22.8 6.6	(feet) 50	(ft/ft) 0.0040 0.0040	(ft/sec) 0.04 0.32		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps						
	(min) 22.8	(feet) 50	(ft/ft) 0.0040	(ft/sec) 0.04		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND						
_	(min) 22.8 6.6	(feet) 50 126	(ft/ft) 0.0040 0.0040	(ft/sec) 0.04 0.32		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps						
_	(min) 22.8 6.6	(feet) 50 126	(ft/ft) 0.0040 0.0040	(ft/sec) 0.04 0.32		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND						

Subcatchment E1: Property Offsite

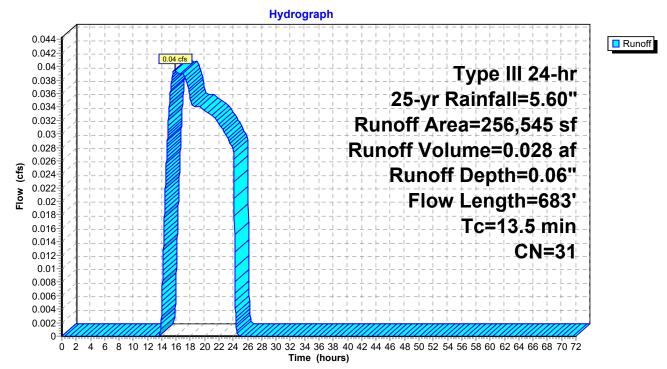

Summary for Subcatchment E2: E2

Runoff = 6.85 cfs @ 12.32 hrs, Volume= 0.786 af, Depth= 1.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

	A	rea (sf)	CN [Description						
*		9,050	98 F	Paved parking, HSG A (OFFSITE)						
*		49,865	30 \	Woods, Good, HSG A (OFFSITE)						
*		20,149	78 \	Vetlands/w	oods. HSG	A (OFFSITE)				
*		4,604	98 F	Paved park	ing, HSG C	C(OFFSITE)				
*		4,156	70 \	Noods, Go	od, HSG C	(OFFSITE)				
*		3,605	78 \	Vetlands/w	oods, HSG	GC (OFFSITE)				
		83,652	70 \	Voods, Go	od, HSG C					
*		5,924			oods, HSG					
*		28,611			oods, HSG					
_		15,824	30 \	Noods, Go	od, HSG A					
	2	25,440	62 \	Veighted A	verage					
	2	11,786	ç	93.94% Per	rvious Area					
		13,654	6	6.06% Impe	ervious Area	а				
	Тс	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	15.8	50	0.0100	0.05		Sheet Flow, START				
						Woods: Light underbrush n= 0.400 P2= 3.40"				
	3.2	95	0.0100	0.50		Shallow Concentrated Flow, B-C				
						Woodland Kv= 5.0 fps				
	2.2	174	0.0710	1.33		Shallow Concentrated Flow, c-WETLAND				
_						Woodland Kv= 5.0 fps				
	21.2	319	Total							

Subcatchment E2: E2

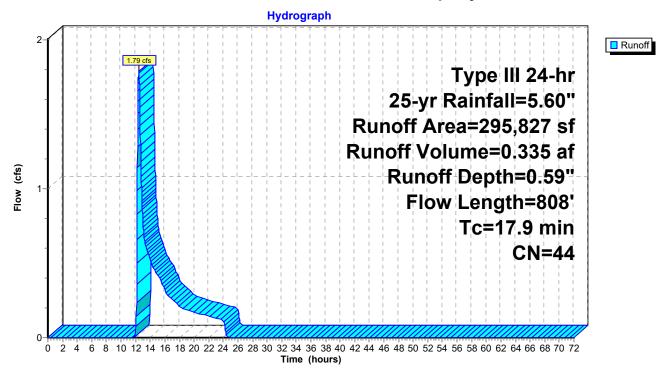

Summary for Subcatchment E3: SW Property

Runoff = 0.04 cfs @ 15.81 hrs, Volume= 0.028 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

_	A	rea (sf)	CN I	Description		
	1	57,110	30 V	Noods, Go	od, HSG A	
*		94,725	30 \	Noods, Fai	r, HSG A (0	OFFSITE)
*		4,710	98 I	mpervious,	HSG A (O	FFSITE
-	2	56,545	31 \	Neighted A	verage	
	2	51,835	ę	98.16% Pei	vious Area	
		4,710		1.84% Impe	ervious Are	a
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.2	50	0.0300	0.08		Sheet Flow, Start Off Property
						Woods: Light underbrush n= 0.400 P2= 3.40"
	3.3	633	0.0400	3.22		Shallow Concentrated Flow, To Wetland
_						Unpaved Kv= 16.1 fps
	13.5	683	Total			

Subcatchment E3: SW Property

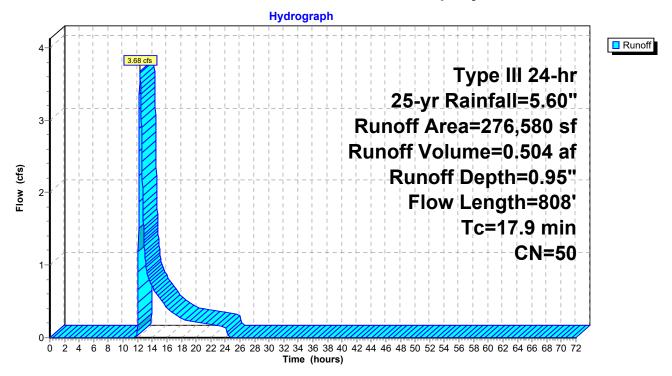

Summary for Subcatchment E4: Central Property

Runoff = 1.79 cfs @ 12.45 hrs, Volume= 0.335 af, Depth= 0.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

A	rea (sf)	CN E	Description		
1	95,082	30 V	Voods, Go	od, HSG A	
1	100,745	70 V	Voods, Go	od, HSG C	
2	295,827	44 V	Veighted A	verage	
2	295,827	1	00.00% Pe	ervious Are	а
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
13.4	50	0.0150	0.06		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.40"
4.5	758	0.0310	2.83		Shallow Concentrated Flow, B-C
					Unpaved Kv= 16.1 fps
17.9	808	Total			

Subcatchment E4: Central Property

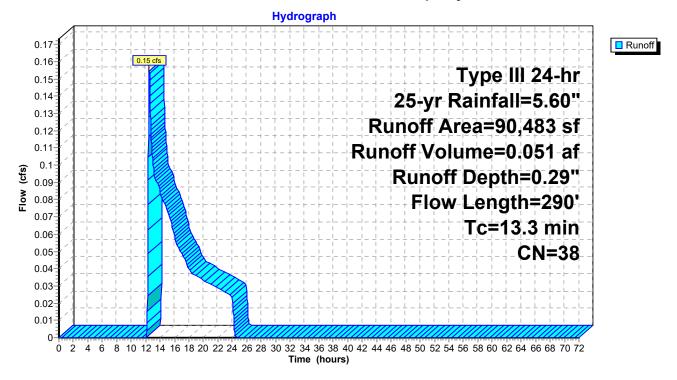

Summary for Subcatchment E5: Central Property

Runoff = 3.68 cfs @ 12.32 hrs, Volume= 0.504 af, Depth= 0.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

	A	rea (sf)	CN	Description		
*		3,765	98	Pavement,	HSG A (OF	FFSITE)
*		8,121		Impervious		
*		17,970				(OFFSITE)
*		41,632				bod, HSG Á (OFFSITE)
		69,621		Woods, Go		
	1	03,483	30	Woods, Go	od, HSG A	
*		2,694	98	Pavement,	HSG A	
*		1,985	98	Roofs, HSC	θA	
		27,309	74	>75% Gras	s cover, Go	bod, HSG C
	2	76,580	50	Weighted A	verage	
	260,015 94.01% Pervious Area					1
		16,565		5.99% Impe	ervious Are	а
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.4	50	0.0150	0.06		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.40"
	4.5	758	0.0310	2.83		Shallow Concentrated Flow, B-C
_						Unpaved Kv= 16.1 fps
	17.9	808	Total			

Subcatchment E5: Central Property


Summary for Subcatchment E6: SE Property

Runoff = 0.15 cfs @ 12.53 hrs, Volume= 0.051 af, Depth= 0.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

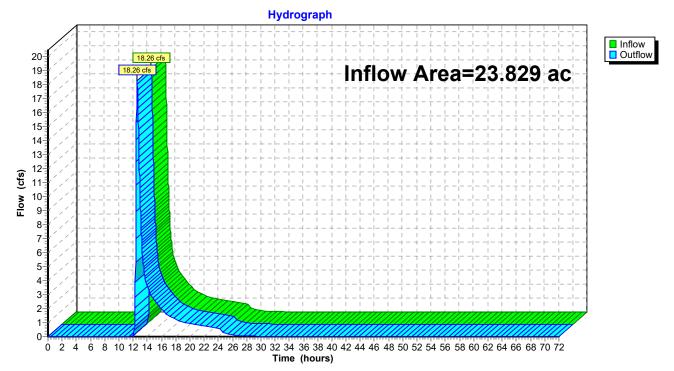
	Area (sf)	CN [Description		
	39,519	30 \	Voods, Go	od, HSG A	
	1,209	70 \	Voods, Go	od, HSG C	
	11,750	49 5	50-75% Gra	ass cover, l	Fair, HSG A
	770	98 F	Paved park	ing, HSG A	N
*	15,917	30 \	Voods, Go	od, HSG A	(OFFSITE)
*	406	70 \	Noods, Go	od, HSG C	(OFFSITE)
*	18,054	39 >	>75% Gras	s cover, Go	bod, HSG A (OFFSITE)
*	2,858	98 F	Paved park	ing, HSG A	(OFFSITE)
	90,483	38 \	Veighted A	verage	
	86,855	ç	95.99% Pei	rvious Area	
	3,628	2	1.01% Impe	ervious Are	а
To	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
11.5	50	0.0220	0.07		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.40"
1.8	240	0.0200	2.28		Shallow Concentrated Flow, B-C
					Unpaved Kv= 16.1 fps
13.3	290	Total			

Subcatchment E6: SE Property

Summary for Subcatchment E7: SE Property

Runoff = 0.56 cfs @ 12.09 hrs, Volume= 0.040 af, Depth= 2.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

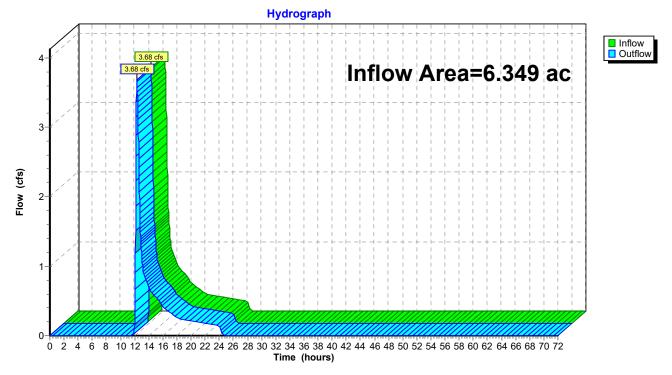

	8,473 8,473			od, HSG C ervious Are		
Тс	Length	Slope	Velocity	Capacity	Description	
in)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description	
6.0			, <u> </u>		Direct Entry,	
			S	ubcatchm	nent E7: SE Property	
				Hydro	graph	
0.6		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				📘 Ru
0.55	×		$\overline{1}$ - $\overline{1}$ - $\overline{1}$ - $\overline{1}$ - $\overline{1}$ - $\overline{1}$		Type III 24-hr	
0.5			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		25-yr Rainfall=5.60"	
0.45			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Runoff Area=8,473 sf	
0.4	,		+ - + - +		Runoff Volume=0.040 af	
0.35					Runoff Depth=2.49"	
0.3					Tc=6.0 min	
0.25					CN=70	
0.2					------------	
0.15	/'' / /					
0.1						
0.05						

Summary for Reach DP-1: Wetland

Inflow Are	a =	23.829 ac, 17.47% Impervious, Inflow Depth = 1.23" for 25-yr event	
Inflow	=	8.26 cfs @ 12.57 hrs, Volume= 2.444 af	
Outflow	=	8.26 cfs @ 12.57 hrs, Volume= 2.444 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs

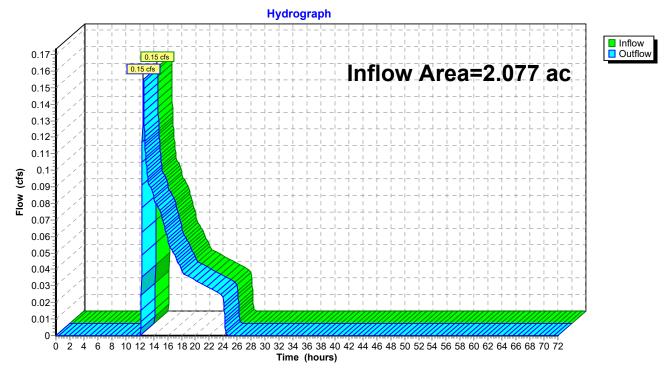
Reach DP-1: Wetland



Summary for Reach DP-2: North PL

Inflow Area =	6.349 ac,	5.99% Impervious, Inflow D	Depth = 0.95" for 25-yr event
Inflow =	3.68 cfs @	12.32 hrs, Volume=	0.504 af
Outflow =	3.68 cfs @	12.32 hrs, Volume=	0.504 af, Atten= 0%, Lag= 0.0 min

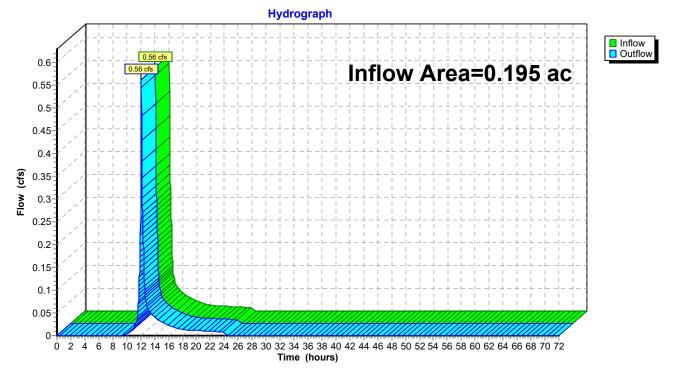
Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs


Reach DP-2: North PL

Summary for Reach DP-3: PL 248 Water Street

Inflow Area	a =	2.077 ac,	4.01% Impervious, Inflow	v Depth = 0.29"	for 25-yr event
Inflow	=	0.15 cfs @	12.53 hrs, Volume=	0.051 af	
Outflow	=	0.15 cfs @	12.53 hrs, Volume=	0.051 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs


Reach DP-3: PL 248 Water Street

Summary for Reach DP-4: South PL

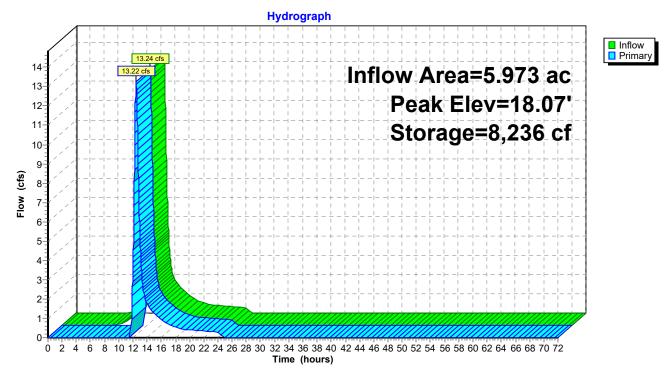
Inflow Area =	0.195 ac,	0.00% Impervious, Inflow [Depth = $2.49"$	for 25-yr event
Inflow =	0.56 cfs @	12.09 hrs, Volume=	0.040 af	-
Outflow =	0.56 cfs @	12.09 hrs, Volume=	0.040 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs

Reach DP-4: South PL

Summary for Pond E-P1: Wetland

Inflow Area =	5.973 ac, 62.63% Impervious, Inflow	Depth = 3.42" for 25-yr event
Inflow =	13.24 cfs @ 12.44 hrs, Volume=	1.703 af
Outflow =	13.22 cfs @ 12.45 hrs, Volume=	1.535 af, Atten= 0%, Lag= 1.0 min
Primary =	13.22 cfs @ 12.45 hrs, Volume=	1.535 af


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 18.07' @ 12.45 hrs Surf.Area= 13,407 sf Storage= 8,236 cf

Plug-Flow detention time= 71.2 min calculated for 1.535 af (90% of inflow) Center-of-Mass det. time= 22.8 min (863.4 - 840.5)

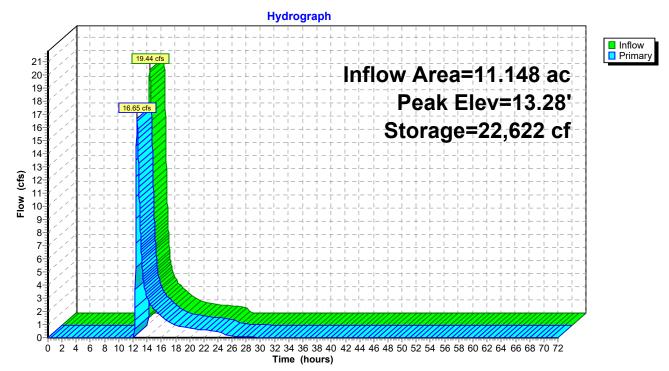
Volume	I	nvert	Avail.Sto	rage	Storage	Description	
#1	1	7.00'	236,2	53 cf	Custom	n Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	n	Surf	Area	Inc	Store	Cum.Store	
(fee			(sq-ft)	(cubic-feet)		(cubic-feet)	
17.0	_/		2,349	(00.010	0	0	
18.0			2,281		7,315	7,315	
19.0			7,986		20,134	27,449	
20.0			7,607		32,797	60,245	
21.0			9,582		13,595	103,840	
22.0 23.0			6,971 1,302		58,277 74,137	162,116 236,253	
23.0	50	0	1,302	1	4,137	230,233	
Device	Routir	ng	Invert	Outle	et Device	s	
#1	Prima	ry	18.00'	Asyı	mmetrica	al Weir, C= 3.27	7
							43 23.94 57.50 86.92 287.08 357.73
						95 528.04 555.9	-
					· · ·		.00 20.00 19.00 18.00 18.00 19.00
				20.0	0 21.00	22.00 23.00	

Primary OutFlow Max=12.74 cfs @ 12.45 hrs HW=18.07' (Free Discharge) **1=Asymmetrical Weir** (Weir Controls 12.74 cfs @ 0.86 fps)

Pond E-P1: Wetland

Summary for Pond E-P2: Wetland

Inflow Area =	11.148 ac, 36.37% Impervious, Inflow	Depth = 2.50" for 25-yr event
Inflow =	19.44 cfs @ 12.40 hrs, Volume=	2.321 af
Outflow =	16.65 cfs @ 12.58 hrs, Volume=	2.082 af, Atten= 14%, Lag= 10.9 min
Primary =	16.65 cfs @ 12.58 hrs, Volume=	2.082 af


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 13.28' @ 12.58 hrs Surf.Area= 30,521 sf Storage= 22,622 cf

Plug-Flow detention time= 110.5 min calculated for 2.082 af (90% of inflow) Center-of-Mass det. time= 60.9 min (928.6 - 867.6)

Volume	Inv	ert Avail	.Storage	Storage	Description				
#1	12.	00' 4	17,617 cf	Custom	n Stage Data	(Prismatic)	Listed below	w (Recalc)	
Elevatio (fee 12.0 13.0 14.0	et) 00 00	Surf.Area (sq-ft) 1,826 27,167 39,073	(cubic	.Store <u>c-feet)</u> 0 4,497 3,120	Cum.Stor (cubic-fee 14,49 47,61	0 07			
Device	Routing	Inv	vert Outle	et Device	es				
#1	Primary	12.	Offs 131.	et (feet) 31 . (feet)	al Weir, C= 3 0.00 13.92 4 14.00 13.56	3.45 57.57			

Primary OutFlow Max=16.64 cfs @ 12.58 hrs HW=13.28' (Free Discharge) **1=Asymmetrical Weir** (Weir Controls 16.64 cfs @ 1.22 fps)

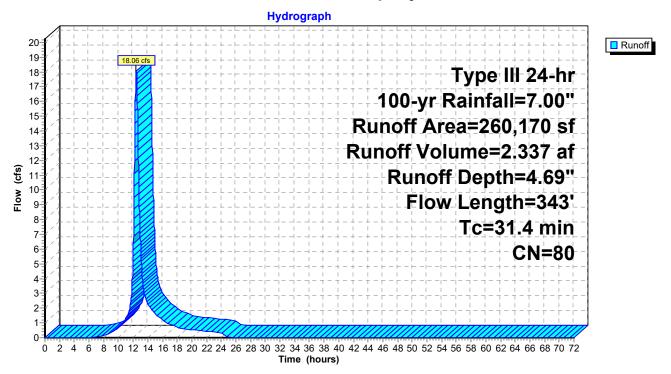
Pond E-P2: Wetland

215-181 PRE-DEV (R3) Type III 24-hr 100-yr Rainfall=7.00" Prepared by McKenzie Engineering Group, Inc. Printed 6/7/2021 HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.02 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method Page 66

SubcatchmentE1: Property Offsite	Runoff Area=260,170 sf 62.63% Impervious Runoff Depth=4.69" Flow Length=343' Tc=31.4 min CN=80 Runoff=18.06 cfs 2.337 af
SubcatchmentE2: E2	Runoff Area=225,440 sf 6.06% Impervious Runoff Depth=2.80" Flow Length=319' Tc=21.2 min CN=62 Runoff=10.90 cfs 1.208 af
SubcatchmentE3: SW Property	Runoff Area=256,545 sf 1.84% Impervious Runoff Depth=0.26" Flow Length=683' Tc=13.5 min CN=31 Runoff=0.22 cfs 0.128 af
SubcatchmentE4: Central Property	Runoff Area=295,827 sf 0.00% Impervious Runoff Depth=1.15" Flow Length=808' Tc=17.9 min CN=44 Runoff=4.68 cfs 0.654 af
SubcatchmentE5: Central Property	Runoff Area=276,580 sf 5.99% Impervious Runoff Depth=1.67" Flow Length=808' Tc=17.9 min CN=50 Runoff=7.53 cfs 0.882 af
SubcatchmentE6: SE Property	Runoff Area=90,483 sf 4.01% Impervious Runoff Depth=0.70" Flow Length=290' Tc=13.3 min CN=38 Runoff=0.66 cfs 0.121 af
SubcatchmentE7: SE Property	Runoff Area=8,473 sf 0.00% Impervious Runoff Depth=3.62" Tc=6.0 min CN=70 Runoff=0.82 cfs 0.059 af
Reach DP-1: Wetland	Inflow=30.86 cfs 3.919 af Outflow=30.86 cfs 3.919 af
Reach DP-2: North PL	Inflow=7.53 cfs 0.882 af Outflow=7.53 cfs 0.882 af
Reach DP-3: PL 248 Water Street	Inflow=0.66 cfs 0.121 af Outflow=0.66 cfs 0.121 af
Reach DP-4: South PL	Inflow=0.82 cfs 0.059 af Outflow=0.82 cfs 0.059 af
Pond E-P1: Wetland	Peak Elev=18.09' Storage=8,469 cf Inflow=18.06 cfs 2.337 af Outflow=18.05 cfs 2.169 af
Pond E-P2: Wetland	Peak Elev=13.37' Storage=25,364 cf Inflow=27.97 cfs 3.377 af Outflow=26.58 cfs 3.137 af

Total Runoff Area = 32.450 ac Runoff Volume = 5.388 af Average Runoff Depth = 1.99" 85.74% Pervious = 27.824 ac 14.26% Impervious = 4.626 ac

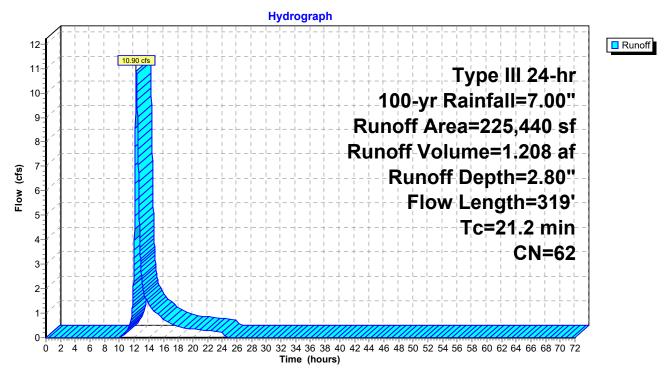

Summary for Subcatchment E1: Property Offsite

Runoff = 18.06 cfs @ 12.43 hrs, Volume= 2.337 af, Depth= 4.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

	Α	rea (sf)	CN D	escription					
*	1	42,754	89 U	Urban commercial, 85% imp, HSG A (OFFSITE)					
*		31,587	30 V	Voods, Good, HSG A (OFFSITE)					
*		48,943	94 U	rban commercial, 85% imp, HSG C (OFFSITE)					
*		8,690		Vetlands/woods, HSG A (OFFSITE)					
*		25,996				(OFFSITE)			
*		2,200	78 V	Vetlands/w	oods, HSG	GC (OFFSITE)			
	2	60,170	80 V	Veighted A	verage				
		97,228	3	7.37% Per	vious Area				
	1	62,942	6	2.63% Imp	pervious Ar	ea			
	_				•	— • • •			
	ŢĊ	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	22.8	E0							
		50	0.0040	0.04		Sheet Flow, Start			
						Woods: Light underbrush n= 0.400 P2= 3.40"			
	6.6	126	0.0040 0.0040	0.04 0.32		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C			
	6.6	126	0.0040	0.32		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps			
						Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND			
	6.6	126	0.0040	0.32		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps			
	6.6	126	0.0040	0.32		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND			

Subcatchment E1: Property Offsite

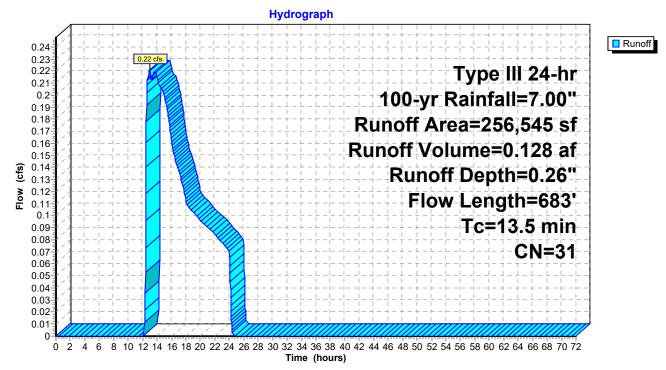

Summary for Subcatchment E2: E2

Runoff = 10.90 cfs @ 12.31 hrs, Volume= 1.208 af, Depth= 2.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

	A	rea (sf)	CN [Description				
*		9,050	98 F	Paved park	ing, HSG A	(OFFSITE)		
*		49,865	30 \	Woods, Good, HSG A (OFFSITE)				
*		20,149	78 \	Vetlands/w	oods. HSG	A (OFFSITE)		
*		4,604				C (OFFSITE)		
*		4,156				(OFFSITE)		
*		3,605				GC (OFFSITE)		
		83,652		,	od, HSG C			
*		5,924			oods, HSG			
*		28,611			voods, HSG			
_		15,824	30 \	Voods, Go	od, HSG A			
		25,440		Veighted A				
	2	11,786	ę	93.94% Pei	rvious Area			
		13,654	6	6.06% Imp€	ervious Are	а		
	_							
	Tc	Length	Slope		Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	15.8	50	0.0100	0.05		Sheet Flow, START		
						Woods: Light underbrush n= 0.400 P2= 3.40"		
	3.2	95	0.0100	0.50		Shallow Concentrated Flow, B-C		
						Woodland Kv= 5.0 fps		
	2.2	174	0.0710	1.33		Shallow Concentrated Flow, c-WETLAND		
						Woodland Kv= 5.0 fps		
	21.2	319	Total					

Subcatchment E2: E2

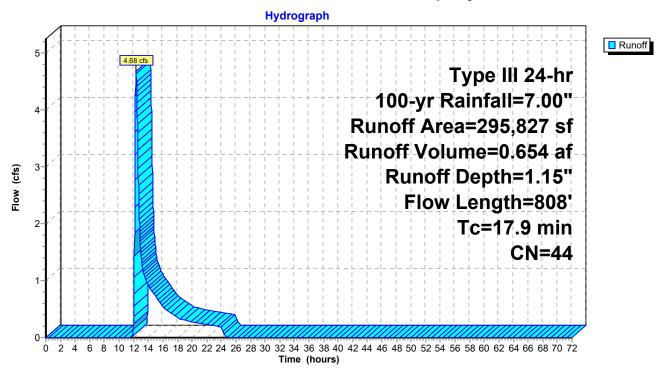

Summary for Subcatchment E3: SW Property

Runoff = 0.22 cfs @ 12.95 hrs, Volume= 0.128 af, Depth= 0.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

_	A	rea (sf)	CN [Description						
	1	57,110	30 V	Voods, Go	od, HSG A					
*		94,725	30 V	Voods, Fai	r, HSG A (0	OFFSITE)				
*		4,710	98 I	mpervious,	npervious, HSG A (OFFSITE)					
	2	56,545	31 V							
	2	51,835	ç	98.16% Per	vious Area					
		4,710	1	.84% Impe	ervious Area	а				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	/	(ft/a a a)	(cfs)					
	· /	(1001)	(ft/ft)	(ft/sec)	(015)					
	10.2	50	0.0300	0.08	(015)	Sheet Flow, Start Off Property				
					(015)	Sheet Flow, Start Off Property Woods: Light underbrush n= 0.400 P2= 3.40"				
					(015)					
	10.2	50	0.0300	0.08	(CIS)	Woods: Light underbrush n= 0.400 P2= 3.40"				

Subcatchment E3: SW Property

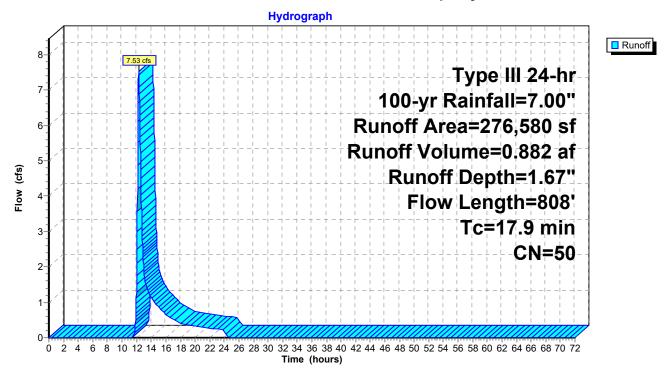

Summary for Subcatchment E4: Central Property

Runoff = 4.68 cfs @ 12.32 hrs, Volume= 0.654 af, Depth= 1.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

A	rea (sf)	CN E	Description		
1	95,082	30 V	Voods, Go	od, HSG A	
1	00,745	70 V	Voods, Go	od, HSG C	
2	95,827	44 V	Veighted A	verage	
2	95,827	1	00.00% Pe	ervious Are	а
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
13.4	50	0.0150	0.06		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.40"
4.5	758	0.0310	2.83		Shallow Concentrated Flow, B-C
					Unpaved Kv= 16.1 fps
17.9	808	Total			

Subcatchment E4: Central Property

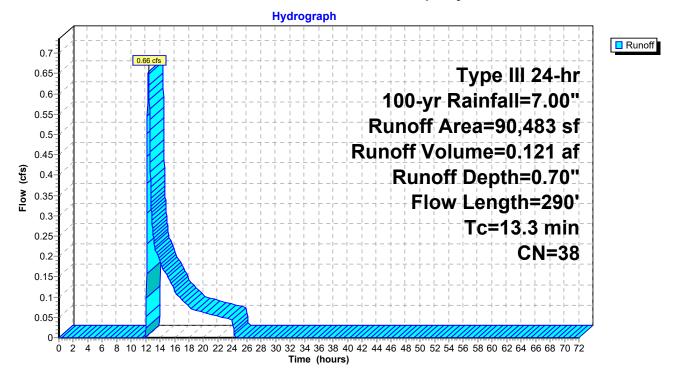

Summary for Subcatchment E5: Central Property

Runoff = 7.53 cfs @ 12.28 hrs, Volume= 0.882 af, Depth= 1.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

	A	rea (sf)	CN	Description		
*		3,765	98	Pavement,	HSG A (OF	FFSITE)
*		8,121		Impervious		
*		17,970				(OFFSITE)
*		41,632				bod, HSG Á (OFFSITE)
		69,621		Woods, Go		
	1	03,483	30	Woods, Go	od, HSG A	
*		2,694	98	Pavement,	HSG A	
*		1,985	98	Roofs, HSC	θA	
		27,309	74	>75% Gras	s cover, Go	bod, HSG C
	2	76,580	50	Weighted A	verage	
	2	60,015		94.01% Pei	rvious Area	1
		16,565		5.99% Impe	ervious Are	а
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.4	50	0.0150	0.06		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.40"
	4.5	758	0.0310	2.83		Shallow Concentrated Flow, B-C
_						Unpaved Kv= 16.1 fps
	17.9	808	Total			

Subcatchment E5: Central Property


Summary for Subcatchment E6: SE Property

Runoff = 0.66 cfs @ 12.39 hrs, Volume= 0.121 af, Depth= 0.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

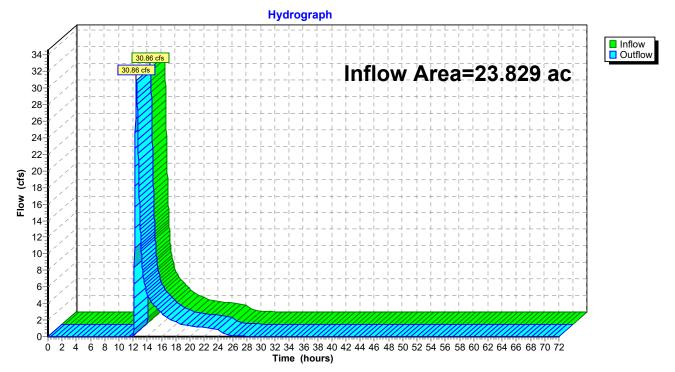
	Area (sf)	CN [Description		
	39,519	30 \	Voods, Go	od, HSG A	
	1,209	70 \	Voods, Go	od, HSG C	
	11,750	49 5	50-75% Gra	ass cover, l	Fair, HSG A
	770	98 F	Paved park	ing, HSG A	N Contraction of the second seco
*	15,917	30 \	Noods, Go	od, HSG A	(OFFSITE)
*	406	70 \	Noods, Go	od, HSG C	(OFFSITE)
*	18,054	39 >	>75% Gras	s cover, Go	bod, HSG A (OFFSITE)
*	2,858	98 F	Paved park	ing, HSG A	(OFFSITE)
	90,483	38 \	Veighted A	verage	
	86,855	ç	95.99% Per	vious Area	
	3,628	2	1.01% Impe	ervious Are	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
11.5	50	0.0220	0.07		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.40"
1.8	240	0.0200	2.28		Shallow Concentrated Flow, B-C
					Unpaved Kv= 16.1 fps
13.3	290	Total			

Subcatchment E6: SE Property

Summary for Subcatchment E7: SE Property

Runoff = 0.82 cfs @ 12.09 hrs, Volume= 0.059 af, Depth= 3.62"

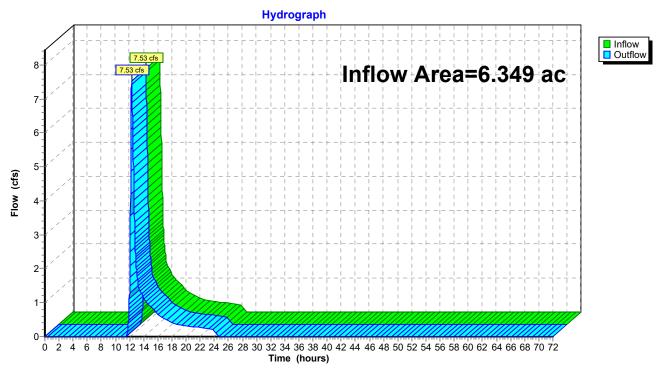
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"


	8,473 8,473			od, HSG C ervious Are		
Tc	Length	Slope	Velocity	Capacity	Description	
min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption	
6.0					Direct Entry,	
			S	ubcatchn	nent E7: SE Property	
					ograph	_
0.9						-
0.85	1/i i i 1 / - ⊢ - ⊢ -	0.82 cfs		+ - + -	· · · · · · · · · · · · · · · · · · ·	_
0.8				+ - + - + -	Type III 24-hr	
0.75					100-yr Rainfall=7.00"	-
0.7						
0.65 0.6					Runoff Area=8,473 sf	-
0.55					Runoff Volume=0.059 af	-
0.5 0.5 0.45					Runoff Depth=3.62"	_
0.45						
0.4					Tc=6.0 min	
0.35				+ - + - + -	CN=70	
0.3						
0.25						-
0.2	= 21 TTTTT					-
0.15	▋゚゚゚゚゚゚゚゚゚゚゠゚゠゠゚゠		$\frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = -\frac{1}{1}$	$-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}$	$\frac{1}{1} - \frac{1}{1} - \frac{1}$	-
0.1						-
0.05				Thinin		7

Summary for Reach DP-1: Wetland

Inflow Are	a =	23.829 ac, 17.47% Impervious, Inflow Depth = 1.97" for 100-yr event
Inflow	=	30.86 cfs @ 12.47 hrs, Volume= 3.919 af
Outflow	=	30.86 cfs @ 12.47 hrs, Volume= 3.919 af, Atten= 0%, Lag= 0.0 min

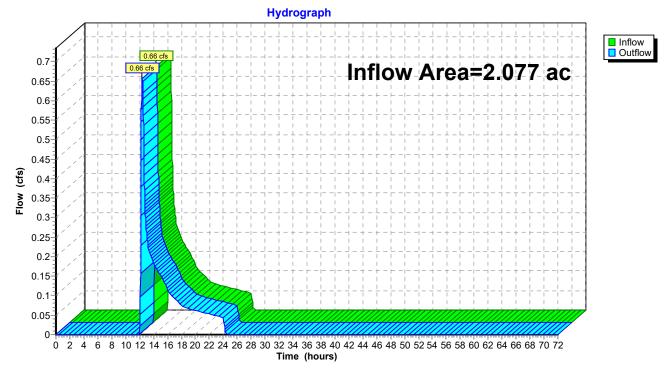
Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs


Reach DP-1: Wetland

Summary for Reach DP-2: North PL

Inflow Area =	6.349 ac,	5.99% Impervious, Inflow D	Depth = 1.67" for 100-yr event
Inflow =	7.53 cfs @	12.28 hrs, Volume=	0.882 af
Outflow =	7.53 cfs @	12.28 hrs, Volume=	0.882 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs

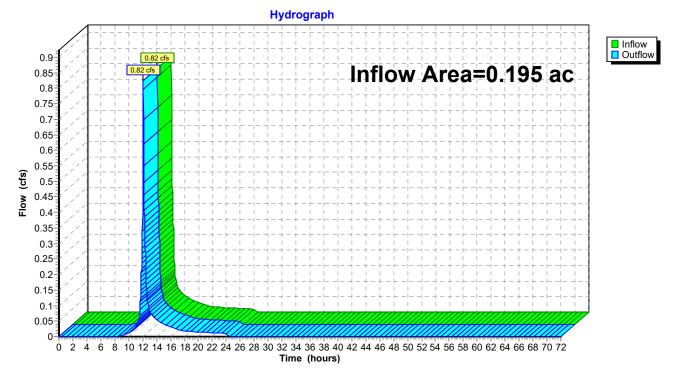


Reach DP-2: North PL

Summary for Reach DP-3: PL 248 Water Street

Inflow Area =	2.077 ac,	4.01% Impervious, Inflow D	epth = 0.70" for 100-yr event
Inflow =	0.66 cfs @	12.39 hrs, Volume=	0.121 af
Outflow =	0.66 cfs @	12.39 hrs, Volume=	0.121 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs


Reach DP-3: PL 248 Water Street

Summary for Reach DP-4: South PL

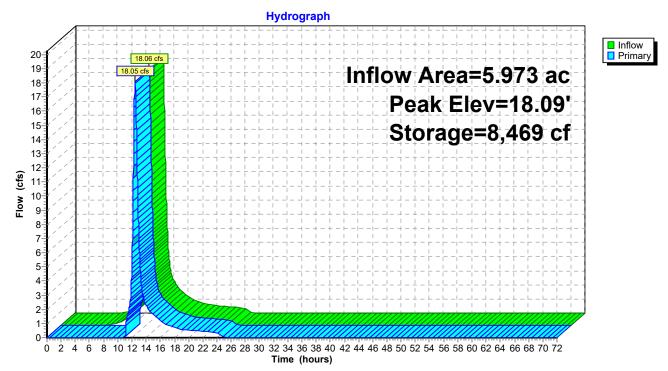
Inflow Area =		0.195 ac,	0.00% Impervious, Ir	nflow Depth = 3.62"	for 100-yr event
Inflow	=	0.82 cfs @	12.09 hrs, Volume=	0.059 af	-
Outflow	=	0.82 cfs @	12.09 hrs, Volume=	0.059 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs

Reach DP-4: South PL

Summary for Pond E-P1: Wetland

Inflow Area =	5.973 ac, 62.63% Impervious, Inflow I	Depth = 4.69" for 100-yr event
Inflow =	18.06 cfs @ 12.43 hrs, Volume=	2.337 af
Outflow =	18.05 cfs @ 12.44 hrs, Volume=	2.169 af, Atten= 0%, Lag= 0.7 min
Primary =	18.05 cfs @ 12.44 hrs, Volume=	2.169 af


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 18.09' @ 12.44 hrs Surf.Area= 13,677 sf Storage= 8,469 cf

Plug-Flow detention time= 57.4 min calculated for 2.169 af (93% of inflow) Center-of-Mass det. time= 19.7 min (851.2 - 831.5)

Volume		nvert	Avail.Sto	rage	Storage	Description			
#1	1	7.00'	236,2	53 cf	Custom	n Stage Data (P	Prismatic)List	ed below (F	Recalc)
Flovetic	~~	Cur	f Araa	الم	Store	Cum Store			
Elevatio		Sur	f.Area		.Store	Cum.Store			
(fee	et)		(sq-ft)	(cubic	c-feet)	(cubic-feet)			
17.0	00		2,349		0	0			
18.0	00	1	2,281		7,315	7,315			
19.0	00	2	7,986	2	20,134	27,449			
20.0	00	3	7,607	3	32,797	60,245			
21.0	00	4	49,582		13,595	103,840			
22.0	00	6	6,971	5	58,277	162,116			
23.0	00	8	1,302	7	74,137	236,253			
During	Durt		1	0.4					
Device	Routi	ng	Invert	Outle	et Device	S			
#1	Prima	ary	18.00'	Asyı	mmetrica	al Weir, C= 3.2 [°]	7		
				Offse	et (feet)	0.00 10.80 18.	.43 23.94 57	.50 86.92	287.08 357.73
				427.	57 483.9	5 528.04 555.	.94		
				Elev	. (feet) 2	23.00 22.00 21	1.00 20.00 1	9.00 18.00	18.00 19.00
					· · ·	22.00 23.00			

Primary OutFlow Max=17.66 cfs @ 12.44 hrs HW=18.09' (Free Discharge) —1=Asymmetrical Weir (Weir Controls 17.66 cfs @ 0.95 fps)

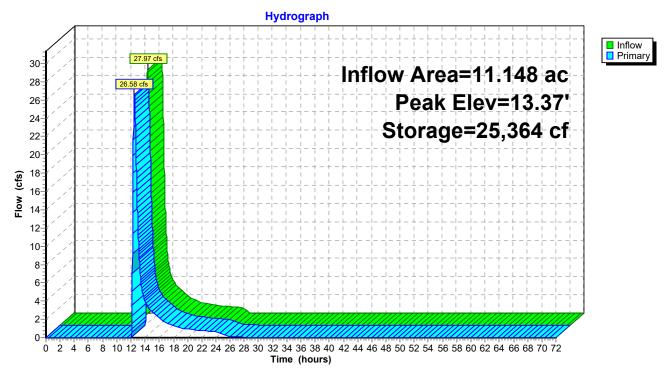
Pond E-P1: Wetland

Summary for Pond E-P2: Wetland

Inflow Area =	11.148 ac, 36.37% Impervious, Inflow	Depth = 3.63" for 100-yr event
Inflow =	27.97 cfs @ 12.38 hrs, Volume=	3.377 af
Outflow =	26.58 cfs @ 12.48 hrs, Volume=	3.137 af, Atten= 5%, Lag= 5.9 min
Primary =	26.58 cfs @ 12.48 hrs, Volume=	3.137 af

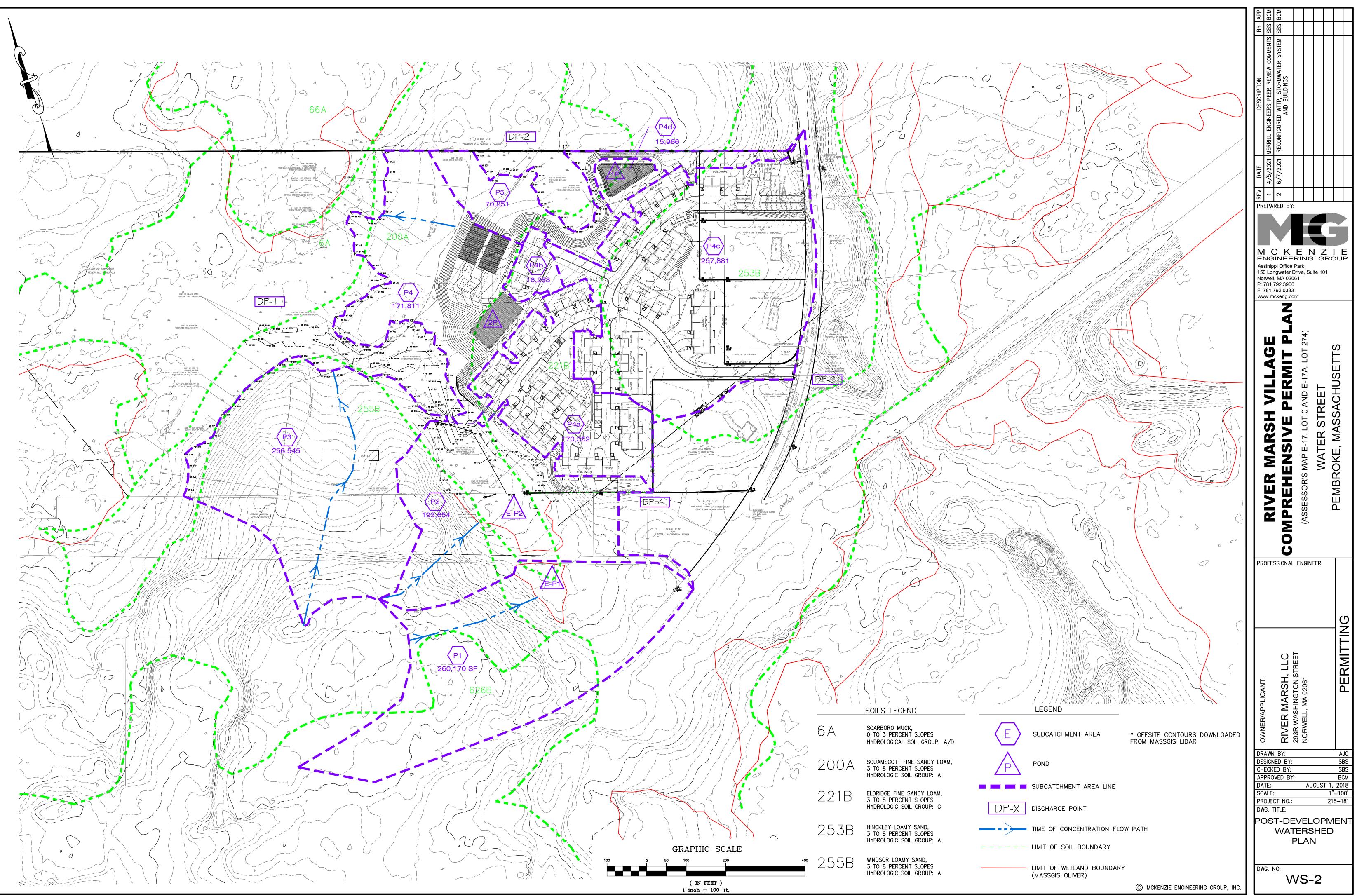
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 13.37' @ 12.48 hrs Surf.Area= 31,572 sf Storage= 25,364 cf

Plug-Flow detention time= 81.8 min calculated for 3.136 af (93% of inflow) Center-of-Mass det. time= 45.8 min (901.3 - 855.4)

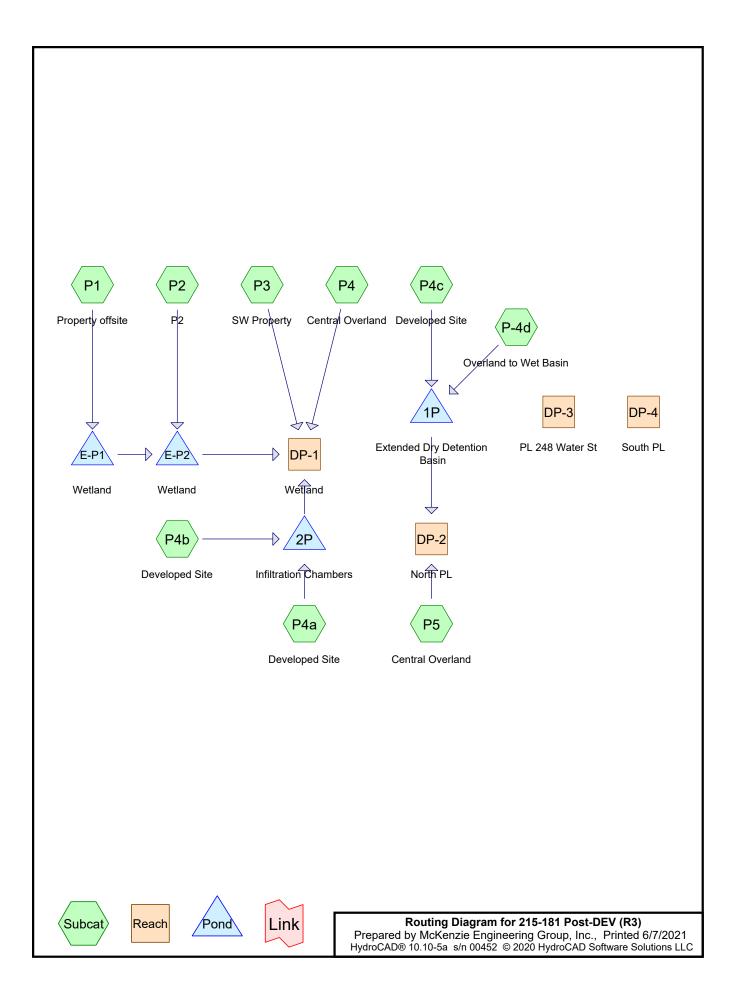

Volume	Inv	ert Avail	.Storage	Storage	Description			
#1	12.	00' 4	17,617 cf	Custom	Stage Data (Pr	ismatic)Listed b	pelow (Recalc)	
Elevatio (fee 12.0 13.0 14.0	et) 00 00	Surf.Area (sq-ft) 1,826 27,167 39,073	(cubio	c.Store <u>c-feet)</u> 0 14,497 33,120	Cum.Store (cubic-feet) 0 14,497 47,617			
Device	Routing	Inv	vert Outle	et Device	S			
#1	Primary	12.	Offs 131.	et (feet)(31 . (feet) 1	al Weir, C= 3.27 0.00 13.92 43.4 14.00 13.56 13.			

Primary OutFlow Max=26.56 cfs @ 12.48 hrs HW=13.37' (Free Discharge) —1=Asymmetrical Weir (Weir Controls 26.56 cfs @ 1.37 fps)

215-181 PRE-DEV (R3)


Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Pond E-P2: Wetland



APPENDIX B

Post-Development Condition

M: \MEG\2015 PROJECTS\215-181\DWGS\CUT SHEETS\ZBA APPLICATION\SUBMISSION (R3)\215-181 WATERSHED (R3).DWG

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc.	
HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC	

 Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
 1	2-yr	Type III 24-hr		Default	24.00	1	3.40	2
2	10-yr	Type III 24-hr		Default	24.00	1	4.70	2
3	25-yr	Type III 24-hr		Default	24.00	1	5.60	2
4	100-yr	Type III 24-hr		Default	24.00	1	7.00	2

Rainfall Events Listing

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc.	
HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC	2

Area Listing (all nodes)

(acres) (subcatchment-numbers) 3.305 39 >75% Grass cover, Good, HSG A (P-4d, P4, P4c, P5) 1.404 39 >75% Grass cover, Good, HSG A (OFFSITE) (P4c, P5) 2.528 74 >75% Grass cover, Good, HSG A (OFFSITE) (P4c, P5) 0.086 98 Decks, HSG A (P4, P4c, P5) 0.116 98 Decks, HSG A (P4, P4c, P5) 0.057 76 Gravel roads, HSG A (P4) 0.033 89 Gravel roads, HSG A (P4) 0.033 89 Gravel roads, HSG A (P4) 0.295 98 Impervious, HSG A (OFFSITE) (P3, P4c) 1.116 98 Paved parking, HSG C (P4a, P4b, P4c) 0.261 98 Paved parking, HSG C (P4a, P4b, P4c) 0.106 98 Paved parking, HSG C (P4a, P4b, P4c) 0.106 98 Paved parking, HSG C (P4a, P4b, P4c) 0.106 98 Paveed parking, HSG A (OFFSITE) (P2, P4c) 1.204 98 Paveenparking, HSG A (OFFSITE) (P1, P2) 0.086 98 Paveenparking, HSG A (OFFSITE) (P4c, P5) 0.749 98 Roofs, HSG A (P4c)	Area	CN	Description
1.404 39 >75% Grass cover, Good, HSG A (OFFSITE) (P4c, P5) 2.528 74 >75% Grass cover, Good, HSG C (P-4d, P2, P4, P4a, P4b, P4c, P5) 0.086 98 Decks, HSG A (P4, P4c, P5) 0.116 98 Decks, HSG C (P2, P4, P4a, P5) 0.057 76 Gravel roads, HSG A (P4) 0.033 89 Gravel roads, HSG A (OFFSITE) (P3, P4c) 1.116 98 Paved parking, HSG A (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG A (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG C (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG C (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG C (OFFSITE) (P2) 0.086 98 Pavement, HSG A (OFFSITE) (P4c, P5) 0.749 98 Roofs, HSG C (P4a, P4b) 1.600 98 Roofs, HSG A (P4c, P4b) 3.277 89 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.011 98 Walks, HSG A (P4c) 0.057 78 Wetlands/woods, HSG A (OFFSITE) (P1, P2) 0.463 78<	(acres)		(subcatchment-numbers)
 2.528 74 >75% Grass cover, Good, HSG C (P-4d, P2, P4, P4a, P4b, P4c, P5) 0.086 98 Decks, HSG A (P4, P4c, P5) 0.116 98 Decks, HSG C (P2, P4, P4a, P5) 0.057 76 Gravel roads, HSG A (P4) 0.033 89 Gravel roads, HSG A (P4) 0.033 89 Gravel roads, HSG A (P4b) 0.295 98 Impervious, HSG A (OFFSITE) (P3, P4c) 1.116 98 Paved parking, HSG A (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG C (P4a, P4b, P4c) 0.106 98 Paved parking, HSG C (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG C (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG C (OFFSITE) (P2, P4c) 0.106 98 Paved parking, HSG C (OFFSITE) (P2) 0.086 98 Pavement, HSG A (OFFSITE) (P4c, P5) 0.749 98 Roofs, HSG A (P4a, P4b) 1.660 98 Roofs, HSG C (P4a, P4b) 3.277 89 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.014 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG A (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (P2, P4c) 2.175 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c) 	 3.305	39	>75% Grass cover, Good, HSG A (P-4d, P4, P4c, P5)
0.086 98 Decks, HSG A (P4, P4c, P5) 0.116 98 Decks, HSG C (P2, P4, P4a, P5) 0.057 76 Gravel roads, HSG A (P4) 0.033 89 Gravel roads, HSG A (P4) 0.033 89 Gravel roads, HSG A (OFFSITE) (P3, P4c) 1.116 98 Paved parking, HSG A (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG C (P4a, P4b, P4c) 0.106 98 Paved parking, HSG C (OFFSITE) (P2) 0.086 98 Paved parking, HSG C (OFFSITE) (P2) 0.086 98 Pavement, HSG A (OFFSITE) (P2) 0.086 98 Pavement, HSG A (OFFSITE) (P2) 0.086 98 Roofs, HSG A (P4a, P4b) 1.660 98 Roofs, HSG C (P4a, P4b) 1.660 98 Roofs, HSG A (P4c) 0.011 98 Roofs, HSG A (P4c) 0.011 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG A (P2) 0.1199 78 Wetlands/woods, HSG A (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (1.404	39	>75% Grass cover, Good, HSG A (OFFSITE) (P4c, P5)
0.116 98 Decks, HSG C (P2, P4, P4a, P5) 0.057 76 Gravel roads, HSG A (P4) 0.033 89 Gravel roads, HSG C (P4b) 0.295 98 Impervious, HSG A (OFFSITE) (P3, P4c) 1.116 98 Paved parking, HSG A (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG C (P4a, P4b, P4c) 0.106 98 Paved parking, HSG C (OFFSITE) (P2, P4c) 0.106 98 Paved parking, HSG C (OFFSITE) (P2, P4c) 0.106 98 Paved parking, HSG C (OFFSITE) (P4c, P5) 0.749 98 Roofs, HSG A (P4a, P4b) 1.660 98 Roofs, HSG C (P4a, P4b) 1.60 98 Roofs, HSG A (P4a, P4b) 3.277 89 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 0.011 98 Walks, HSG C (P4c) 0.0657 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG A (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (P3)	2.528	74	>75% Grass cover, Good, HSG C (P-4d, P2, P4, P4a, P4b, P4c, P5)
0.057 76 Gravel roads, HSG A (P4) 0.033 89 Gravel roads, HSG C (P4b) 0.295 98 Impervious, HSG A (OFFSITE) (P3, P4c) 1.116 98 Paved parking, HSG A (P4c) 0.261 98 Paved parking, HSG A (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG C (P4a, P4b, P4c) 0.106 98 Paved parking, HSG C (OFFSITE) (P2) 0.086 98 Pavement, HSG A (OFFSITE) (P4c, P5) 0.749 98 Roofs, HSG A (P4a, P4b) 1.600 98 Roofs, HSG C (P4a, P4b) 3.277 89 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.011 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG A (P2) 0.657 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG A (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (P2) 2.175 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c)	0.086	98	Decks, HSG A (P4, P4c, P5)
0.033 89 Gravel roads, HSG C (P4b) 0.295 98 Impervious, HSG A (OFFSITE) (P3, P4c) 1.116 98 Paved parking, HSG A (P4c) 0.261 98 Paved parking, HSG A (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG C (P4a, P4b, P4c) 0.106 98 Paved parking, HSG C (OFFSITE) (P2) 0.086 98 Pavement, HSG A (OFFSITE) (P4c, P5) 0.749 98 Roofs, HSG A (P4a, P4b) 1.600 98 Roofs, HSG C (P4a, P4b) 3.277 89 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.014 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG A (P2) 0.657 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG A (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (P2) 2.175 30 Woods, Good, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c)	0.116	98	Decks, HSG C (P2, P4, P4a, P5)
0.295 98 Impervious, HSG A (OFFSITE) (P3, P4c) 1.116 98 Paved parking, HSG A (P4c) 0.261 98 Paved parking, HSG A (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG C (P4a, P4b, P4c) 0.106 98 Paved parking, HSG C (OFFSITE) (P2) 0.086 98 Pavement, HSG A (OFFSITE) (P4c, P5) 0.749 98 Roofs, HSG A (P4a, P4b) 1.660 98 Roofs, HSG C (P4a, P4b) 1.660 98 Roofs, HSG C (P4a, P4b) 1.224 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.014 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG A (P4c) 0.012 98 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG A (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods. HSG A (OFFSITE) (P2) 2.175 30 Woods, Good, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270<	0.057	76	Gravel roads, HSG A (P4)
1.116 98 Paved parking, HSG A (P4c) 0.261 98 Paved parking, HSG A (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG C (P4a, P4b, P4c) 0.106 98 Paved parking, HSG C (OFFSITE) (P2) 0.086 98 Pavement, HSG A (OFFSITE) (P4c, P5) 0.749 98 Roofs, HSG A (P4a, P4b) 1.600 98 Roofs, HSG C (P4a, P4b) 3.277 89 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.014 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG A (P2) 0.113 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG A (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (P2) 2.175 30 Woods, Good, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (P2, P5) 1.560	0.033	89	Gravel roads, HSG C (P4b)
0.261 98 Paved parking, HSG A (OFFSITE) (P2, P4c) 1.204 98 Paved parking, HSG C (P4a, P4b, P4c) 0.106 98 Paved parking, HSG C (OFFSITE) (P2) 0.086 98 Pavement, HSG A (OFFSITE) (P4c, P5) 0.749 98 Roofs, HSG A (P4a, P4b) 1.660 98 Roofs, HSG C (P4a, P4b) 3.277 89 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.014 98 Walks, HSG C (P4c) 0.011 98 Walks, HSG C (P4c) 0.657 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG A (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P	0.295	98	Impervious, HSG A (OFFSITE) (P3, P4c)
1.204 98 Paved parking, HSG C (P4a, P4b, P4c) 0.106 98 Paved parking, HSG C (OFFSITE) (P2) 0.086 98 Pavement, HSG A (OFFSITE) (P4c, P5) 0.749 98 Roofs, HSG A (P4a, P4b) 1.660 98 Roofs, HSG C (P4a, P4b) 3.277 89 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.014 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG A (P4c) 0.657 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG A (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (P2) 2.175 30 Woods, Good, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	1.116	98	Paved parking, HSG A (P4c)
0.106 98 Paved parking, HSG C (OFFSITE) (P2) 0.086 98 Pavement, HSG A (OFFSITE) (P4c, P5) 0.749 98 Roofs, HSG A (P4a, P4b) 1.660 98 Roofs, HSG C (P4a, P4b) 3.277 89 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.014 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG C (P4c) 0.657 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG A (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (P2) 2.175 30 Woods, Fair, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (P2, P3, P4, P5) 2.648 30 Woods, Good, HSG C (P2, P5) 0.270 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	0.261	98	Paved parking, HSG A (OFFSITE) (P2, P4c)
0.086 98 Pavement, HSG A (OFFSITE) (P4c, P5) 0.749 98 Roofs, HSG A (P4a, P4b) 1.660 98 Roofs, HSG C (P4a, P4b) 3.277 89 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.014 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG C (P4c) 0.657 78 Wetlands/woods, HSG A (P2) 0.199 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG C (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (P2) 2.175 30 Woods, Fair, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (P2, P3, P4, P5) 2.648 30 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	1.204	98	Paved parking, HSG C (P4a, P4b, P4c)
0.749 98 Roofs, HSG A (P4a, P4b) 1.660 98 Roofs, HSG C (P4a, P4b) 3.277 89 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.014 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG C (P4c) 0.657 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.199 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG C (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (P2) 2.175 30 Woods, Good, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	0.106	98	Paved parking, HSG C (OFFSITE) (P2)
1.660 98 Roofs, HSG C (P4a, P4b) 3.277 89 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.014 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG C (P4c) 0.657 78 Wetlands/woods, HSG A (P2) 0.199 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG C (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods. HSG A (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods. HSG A (OFFSITE) (P2) 2.175 30 Woods, Fair, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	0.086	98	Pavement, HSG A (OFFSITE) (P4c, P5)
3.277 89 Urban commercial, 85% imp, HSG A (OFFSITE) (P1) 1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.014 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG C (P4c) 0.657 78 Wetlands/woods, HSG A (P2) 0.199 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG C (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods. HSG A (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods. HSG A (OFFSITE) (P2) 2.175 30 Woods, Fair, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	0.749	98	Roofs, HSG A (P4a, P4b)
1.124 94 Urban commercial, 85% imp, HSG C (OFFSITE) (P1) 0.014 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG C (P4c) 0.657 78 Wetlands/woods, HSG A (P2) 0.199 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG C (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods. HSG A (OFFSITE) (P2) 2.175 30 Woods, Fair, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (P2, P3, P4, P5) 2.648 30 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	1.660	98	Roofs, HSG C (P4a, P4b)
0.014 98 Walks, HSG A (P4c) 0.011 98 Walks, HSG C (P4c) 0.657 78 Wetlands/woods, HSG A (P2) 0.199 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG C (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (P2) 2.175 30 Woods, Fair, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (P2, P3, P4, P5) 2.648 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	3.277	89	Urban commercial, 85% imp, HSG A (OFFSITE) (P1)
0.011 98 Walks, HSG C (P4c) 0.657 78 Wetlands/woods, HSG A (P2) 0.199 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG C (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods. HSG A (OFFSITE) (P2) 2.175 30 Woods, Fair, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	1.124	94	Urban commercial, 85% imp, HSG C (OFFSITE) (P1)
0.657 78 Wetlands/woods, HSG A (P2) 0.199 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG C (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods, HSG A (OFFSITE) (P2) 2.175 30 Woods, Fair, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (P2, P3, P4, P5) 2.648 30 Woods, Good, HSG C (P2, P5) 0.270 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	0.014	98	Walks, HSG A (P4c)
0.199 78 Wetlands/woods, HSG A (OFFSITE) (P1) 0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG C (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods. HSG A (OFFSITE) (P2) 2.175 30 Woods, Fair, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (P2, P3, P4, P5) 2.648 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	0.011	98	Walks, HSG C (P4c)
0.136 78 Wetlands/woods, HSG C (P2) 0.133 78 Wetlands/woods, HSG C (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods. HSG A (OFFSITE) (P2) 2.175 30 Woods, Fair, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (P2, P3, P4, P5) 2.648 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	0.657	78	Wetlands/woods, HSG A (P2)
0.133 78 Wetlands/woods, HSG C (OFFSITE) (P1, P2) 0.463 78 Wetlands/woods. HSG A (OFFSITE) (P2) 2.175 30 Woods, Fair, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (P2, P3, P4, P5) 2.648 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	0.199	78	Wetlands/woods, HSG A (OFFSITE) (P1)
0.463 78 Wetlands/woods. HSG A (OFFSITE) (P2) 2.175 30 Woods, Fair, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (P2, P3, P4, P5) 2.648 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	0.136	78	Wetlands/woods, HSG C (P2)
2.175 30 Woods, Fair, HSG A (OFFSITE) (P3) 6.778 30 Woods, Good, HSG A (P2, P3, P4, P5) 2.648 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	0.133	78	Wetlands/woods, HSG C (OFFSITE) (P1, P2)
6.77830Woods, Good, HSG A (P2, P3, P4, P5)2.64830Woods, Good, HSG A (OFFSITE) (P1, P2, P4c)0.27070Woods, Good, HSG C (P2, P5)1.56070Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	0.463	78	Wetlands/woods. HSG A (OFFSITE) (P2)
2.648 30 Woods, Good, HSG A (OFFSITE) (P1, P2, P4c) 0.270 70 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	2.175	30	Woods, Fair, HSG A (OFFSITE) (P3)
0.270 70 Woods, Good, HSG C (P2, P5) 1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	6.778	30	Woods, Good, HSG A (P2, P3, P4, P5)
1.560 70 Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)	2.648	30	Woods, Good, HSG A (OFFSITE) (P1, P2, P4c)
	0.270	70	Woods, Good, HSG C (P2, P5)
32.450 60 TOTAL AREA	1.560	70	Woods, Good, HSG C (OFFSITE) (P1, P2, P4c)
	32.450	60	TOTAL AREA

215-181 Post-DEV (R3) Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
23.569	HSG A	P-4d, P1, P2, P3, P4, P4a, P4b, P4c, P5
0.000	HSG B	
8.881	HSG C	P-4d, P1, P2, P4, P4a, P4b, P4c, P5
0.000	HSG D	
0.000	Other	
32.450		TOTAL AREA

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc	
	Prepared by McKenzie Engineering Group, Inc

Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Printed 6/7/2021 Page 5

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 4.708	0.000	2.528	0.000	0.000	7.237	>75% Grass cover, Good	P-4d,
							P2,
							P4,
							P4a,
							P4b,
							P4c,
							P5
0.086	0.000	0.116	0.000	0.000	0.202	Decks	P2,
							P4,
							P4a,
							P4c,
							P5
0.057	0.000	0.033	0.000	0.000	0.091	Gravel roads	P4,
							P4b
0.295	0.000	0.000	0.000	0.000	0.295	Impervious	P3,
4 077	0.000	4.040	0.000	0.000	0.007		P4c
1.377	0.000	1.310	0.000	0.000	2.687	Paved parking	P2,
							P4a,
							P4b, P4c
0.086	0.000	0.000	0.000	0.000	0.086	Pavement	P4c,
0.000	0.000	0.000	0.000	0.000	0.000	Favement	P40, P5
0.749	0.000	1.660	0.000	0.000	2.409	Roofs	P3 P4a,
0.743	0.000	1.000	0.000	0.000	2.403	10013	P4b
3.277	0.000	1.124	0.000	0.000	4.401	Urban commercial, 85% imp	P1
0.014	0.000	0.011	0.000	0.000	0.025	Walks	P4c
0.856	0.000	0.269	0.000	0.000	1.126	Wetlands/woods	P1,
							P2
0.463	0.000	0.000	0.000	0.000	0.463	Wetlands/woods.	P2
2.175	0.000	0.000	0.000	0.000	2.175	Woods, Fair	P3
9.426	0.000	1.830	0.000	0.000	11.256	Woods, Good	P1,
							P2,
							P3,
							P4,
							P4c,
							P5
23.569	0.000	8.881	0.000	0.000	32.450	TOTAL AREA	

Ground Covers (all nodes)

215-181	Post-DEV ((R3)
---------	------------	------

Prepared by McKenzie Eng	ineering Group, Inc.
HydroCAD® 10.10-5a s/n 00452	2 © 2020 HydroCAD Software Solutions LLC

 Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)
1	1P	15.50	15.23	27.0	0.0100	0.013	0.0	15.0	0.0
2	2P	16.00	15.74	26.0	0.0100	0.013	0.0	24.0	0.0
3	E-P2	12.83	12.83	18.0	0.0000	0.022	144.0	72.0	0.0

Pipe Listing (all nodes)

Time span=0.00-144.00 hrs, dt=0.02 hrs, 7201 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method						
SubcatchmentP-4d: Overland to Wet B	asin Runoff Area=15,966 sf 0.00% Impervious Runoff Depth=0.66" Tc=6.0 min CN=64 Runoff=0.22 cfs 0.020 af					
SubcatchmentP1: Property offsite	Runoff Area=260,170 sf 62.63% Impervious Runoff Depth=1.56" Flow Length=343' Tc=31.4 min CN=80 Runoff=5.98 cfs 0.775 af					
SubcatchmentP2: P2	Runoff Area=193,654 sf 7.83% Impervious Runoff Depth=0.66" Flow Length=315' Tc=15.1 min CN=64 Runoff=2.01 cfs 0.243 af					
SubcatchmentP3: SW Property	Runoff Area=256,545 sf 1.84% Impervious Runoff Depth=0.00" Flow Length=683' Tc=13.5 min CN=31 Runoff=0.00 cfs 0.000 af					
SubcatchmentP4: Central Overland	Runoff Area=171,811 sf 0.76% Impervious Runoff Depth=0.00" Flow Length=190' Tc=17.0 min CN=39 Runoff=0.00 cfs 0.002 af					
SubcatchmentP4a: Developed Site	Runoff Area=170,352 sf 78.81% Impervious Runoff Depth=2.64" Tc=6.0 min CN=93 Runoff=11.65 cfs 0.860 af					
SubcatchmentP4b: Developed Site	Runoff Area=16,288 sf 69.59% Impervious Runoff Depth=2.54" Tc=6.0 min CN=92 Runoff=1.08 cfs 0.079 af					
SubcatchmentP4c: Developed Site	Runoff Area=257,881 sf 31.09% Impervious Runoff Depth=0.41" Tc=6.0 min CN=58 Runoff=1.56 cfs 0.204 af					
SubcatchmentP5: Central Overland	Runoff Area=70,851 sf 2.13% Impervious Runoff Depth=0.04" Flow Length=190' Tc=17.0 min CN=43 Runoff=0.01 cfs 0.005 af					
Reach DP-1: Wetland	Inflow=1.51 cfs 0.782 af Outflow=1.51 cfs 0.782 af					
Reach DP-2: North PL	Inflow=0.17 cfs 0.229 af Outflow=0.17 cfs 0.229 af					
Reach DP-3: PL 248 Water St	Outflow=0.00 cfs 0.000 af					
Reach DP-4: South PL	Outflow=0.00 cfs 0.000 af					
Pond 1P: Extended Dry Detention Basir	Peak Elev=16.81' Storage=5,141 cf Inflow=1.78 cfs 0.224 af Outflow=0.16 cfs 0.224 af					
Pond 2P: Infiltration Chambers Discarded=0.21	Peak Elev=20.81' Storage=26,452 cf Inflow=12.73 cfs 0.939 af 1 cfs 0.772 af Primary=0.28 cfs 0.167 af Outflow=0.49 cfs 0.939 af					
Pond E-P1: Wetland	Peak Elev=18.04' Storage=7,861 cf Inflow=5.98 cfs 0.775 af Outflow=5.93 cfs 0.607 af					

215-181 Post-DEV (R3)7Prepared by McKenzie Engineering Group, Inc.HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

215-181 Post-DEV (R3)

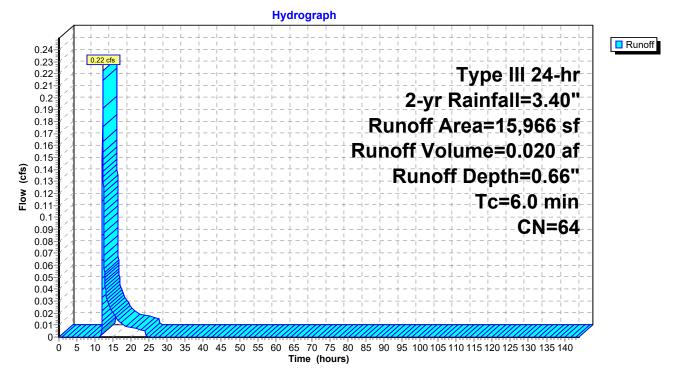
Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Pond E-P2: Wetland

Peak Elev=13.03' Storage=15,283 cf Inflow=7.41 cfs 0.850 af 144.0" x 72.0" Box Culvert n=0.022 L=18.0' S=0.0000 '/' Outflow=1.43 cfs 0.614 af

Total Runoff Area = 32.450 ac Runoff Volume = 2.188 af Average Runoff Depth = 0.81" 70.90% Pervious = 23.006 ac 29.10% Impervious = 9.444 ac

Summary for Subcatchment P-4d: Overland to Wet Basin

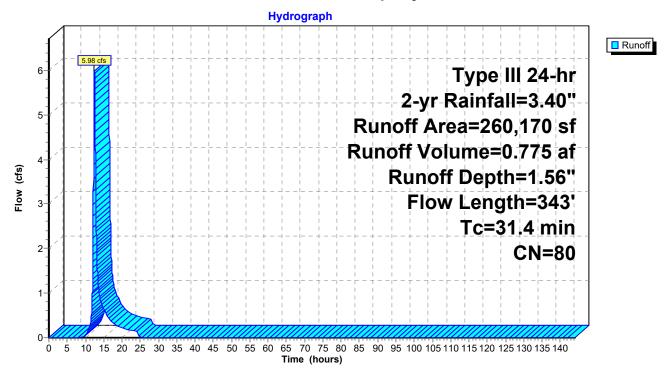

Page 9

0.020 af, Depth= 0.66" Runoff 0.22 cfs @ 12.11 hrs, Volume= =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

A	rea (sf)	CN	Description		
	4,551	39	>75% Gras	s cover, Go	ood, HSG A
	11,415	74	>75% Gras	s cover, Go	ood, HSG C
	15,966	64	Weighted A	verage	
	15,966		100.00% Pe	ervious Are	ea
Tc	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft	t) (ft/sec)	(cfs)	
6.0					Direct Entry,

Subcatchment P-4d: Overland to Wet Basin


Summary for Subcatchment P1: Property offsite

Runoff = 5.98 cfs @ 12.45 hrs, Volume= 0.775 af, Depth= 1.56"

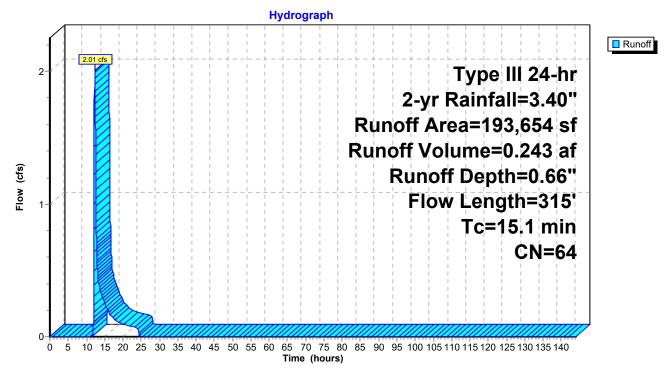
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

_	A	rea (sf)	CN E	Description					
*	1	42,754	89 L	89 Urban commercial, 85% imp, HSG A (OFFSITE)					
*		31,587	30 V	Voods, Go	od, HSG A	(OFFSITE)			
*		48,943	94 L	Irban comi	mercial, 85º	% imp, HSG C (OFFSITE)			
*		8,690	78 V	Vetlands/w	oods, HSG	A (OFFSITE)			
*		25,996	70 V	Voods, Go	od, HSG C	(OFFSITE)			
*		2,200	78 V	Vetlands/w	oods, HSG	C (OFFSITE)			
	2	60,170	80 V	Veighted A	verage				
		97,228	3	7.37% Per	vious Area				
	1	62,942	6	2.63% Imp	pervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
						Description Sheet Flow, Start			
	(min)	(feet)	(ft/ft)	(ft/sec)					
_	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Start			
_	(min) 22.8	(feet) 50	(ft/ft) 0.0040	(ft/sec) 0.04		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40"			
	(min) 22.8	(feet) 50	(ft/ft) 0.0040	(ft/sec) 0.04		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C			
_	(min) 22.8 6.6	(feet) 50 126	(ft/ft) 0.0040 0.0040	(ft/sec) 0.04 0.32		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps			
	(min) 22.8 6.6	(feet) 50 126	(ft/ft) 0.0040 0.0040	(ft/sec) 0.04 0.32		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND			

Subcatchment P1: Property offsite

Summary for Subcatchment P2: P2

Runoff = 2.01 cfs @ 12.25 hrs, Volume= 0.243 af, Depth= 0.66"

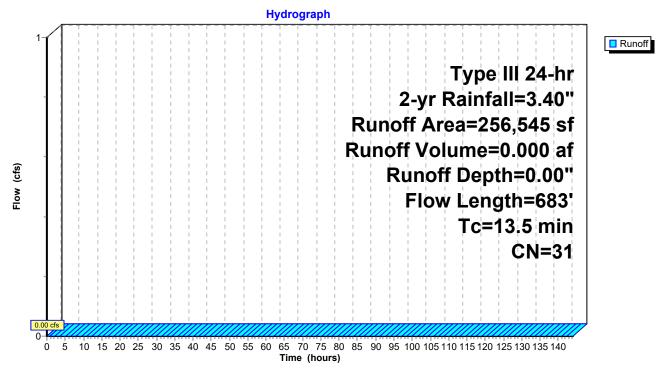

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

	A	rea (sf)	CN [Description		
*		9,050	98 F	Paved park	ing, HSG A	(OFFSITE)
*		49,865	30 \	Noods, Go	od, HSG A	(OFFSITE)
*		20,149				À (OFFSITE)
*		4,604	98 F	Paved park	ing, HSG C	C (OFFSITE)
*		41,546	70 \	Noods, Go	od, HSG C	(OFFSITE)
*		3,605	78 \	Netlands/w	oods, HSG	GC (OFFSITE)
		11,149	70 \	Noods, Go	od, HSG C	
*		5,924	78 \	/wetlands/w	oods, HSG	G C
*		28,611			oods, HSG	
		3,016			od, HSG A	
*		1,504		Decks, HSC		
		14,631	74 >	<u>>75% Gras</u>	s cover, Go	bod, HSG C
	1	93,654	64 \	Neighted A	verage	
	1	78,496	ę	92.17% Per	vious Area	
		15,158	7	7.83% Impe	ervious Are	а
	Тс	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	12.2	50	0.0190	0.07		Sheet Flow, START
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.5	116	0.0690	1.31		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	0.1	20	0.0200	2.87		Shallow Concentrated Flow, C-D
						Paved Kv= 20.3 fps
	1.3	129	0.1100	1.66		Shallow Concentrated Flow, D-WETLAND
						Woodland Kv= 5.0 fps
	15.1	315	Total			

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Subcatchment P2: P2


Summary for Subcatchment P3: SW Property

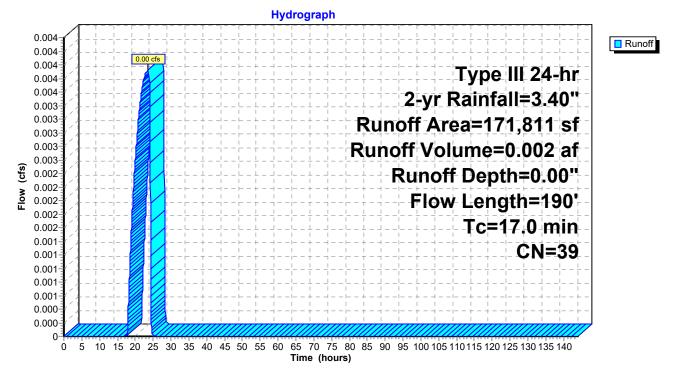
Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

_	A	rea (sf)	CN [Description		
	1	57,110	30 V	Voods, Go	od, HSG A	
*		94,725	30 V	Voods, Fai	r, HSG A (0	OFFSITE)
*		4,710	98 I	mpervious,	HSG A (O	FFSITE
	2	56,545	31 V	Veighted A	verage	
	2	51,835	ç	8.16% Pei	vious Area	
		4,710	1	.84% Impe	ervious Area	a
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.2	50	0.0300	0.08		Sheet Flow, Start Off Property
						Woods: Light underbrush n= 0.400 P2= 3.40"
	3.3	633	0.0400	3.22		Shallow Concentrated Flow, To Wetland
						Unpaved Kv= 16.1 fps
	13.5	683	Total			

Subcatchment P3: SW Property

Summary for Subcatchment P4: Central Overland

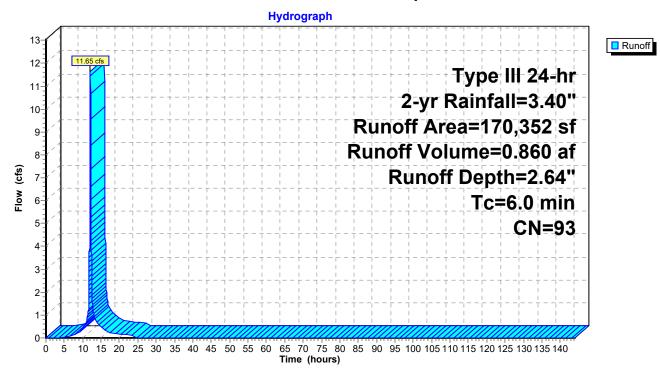

Runoff = 0.00 cfs @ 23.56 hrs, Volume= 0.002 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

	A	rea (sf)	CN I	Description		
	1	04,548	30	Noods, Go	od, HSG A	
		41,769	39 :	>75% Gras	s cover, Go	bod, HSG A
		2,502 76 Gravel roads, HSG A				
		21,686	74 :	>75% Gras	s cover, Go	bod, HSG C
*		767	98 I	Decks, HSC	ЭC	
*		539	98	Decks, HSC	GΑ	
	1	71,811	39	Neighted A	verage	
	1	70,505	9	99.24% Pei	rvious Area	1
		1,306	().76% Impe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.8	50	0.0100	0.05		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.2	140	0.0150	1.97		Shallow Concentrated Flow, B-C
						Unpaved Kv= 16.1 fps
			-			

17.0 190 Total

Subcatchment P4: Central Overland

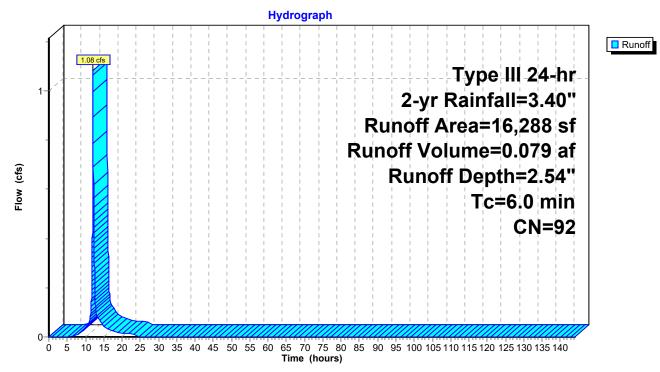

Summary for Subcatchment P4a: Developed Site

Runoff = 11.65 cfs @ 12.09 hrs, Volume= 0.860 af, Depth= 2.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

	Ar	rea (sf)	CN	Description					
	;	32,445	98	Roofs, HSG	βA				
	;	36,095	74	>75% Gras	s cover, Go	ood, HSG C			
		64,685	98	Roofs, HSC	Roofs, HSG C				
*	;	35,350	98	Paved park	Paved parking, HSG C				
*		1,777	98	Decks, HSC	ΞČ				
	1	70,352	93	Weighted A	verage				
	;	36,095		21.19% Per	vious Area				
	1	34,257		78.81% Imp	pervious Ar	ea			
	_				_				
		Length	Slop		Capacity	Description			
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	6.0					Direct Entry,			

Subcatchment P4a: Developed Site


Summary for Subcatchment P4b: Developed Site

Runoff = 1.08 cfs @ 12.09 hrs, Volume= 0.079 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

	Ar	ea (sf)	CN	Description				
		191	98	Roofs, HSC	βA			
		7,608	98	Roofs, HSC	ЭC			
*		3,536	98	Paved park	ing, HSG C	C		
		3,501	74	>75% Gras	s cover, Go	ood, HSG C		
		1,452	89	Gravel road	ls, HSG C			
		16,288	92	Weighted A	verage			
		4,953		30.41% Per	rvious Area	а		
		11,335		69.59% Impervious Area				
	Тс	Length	Slop	e Velocity	Capacity	Description		
(n	nin)	(feet)	(ft/́f	•	(cfs)	•		
	6.0					Direct Entry,		

Subcatchment P4b: Developed Site

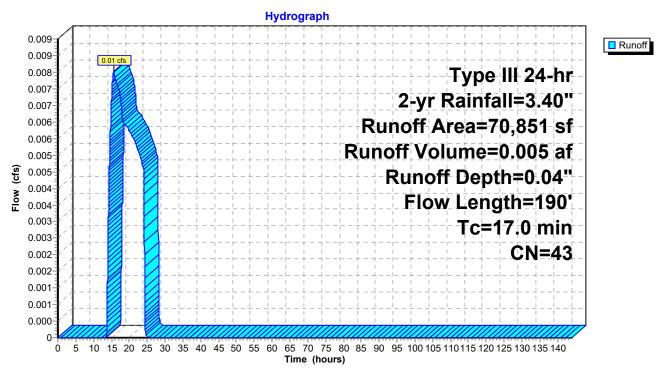
Summary for Subcatchment P4c: Developed Site

Runoff = 1.56 cfs @ 12.13 hrs, Volume= 0.204 af, Depth= 0.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

	Area (sf)	CN	Description
	72,562	39	>75% Grass cover, Good, HSG A
	48,621	98	Paved parking, HSG A
*	599	98	Walks, HSG Å
*	2,713	98	Decks, HSG A
	10,062	74	>75% Grass cover, Good, HSG C
*	13,564	98	Paved parking, HSG C
*	491	98	Walks, HSG C
*	406	70	Woods, Good, HSG C (OFFSITE)
*	33,887	30	Woods, Good, HSG A (OFFSITE)
*	60,799	39	>75% Grass cover, Good, HSG A (OFFSITE)
*	3,744	98	Pavement, HSG A (OFFSITE)
*	2,312	98	Paved parking, HSG A (OFFSITE)
*	8,121	98	Impervious, HSG A (OFFSITE)
	257,881	58	Weighted Average
	177,716		68.91% Pervious Area
	80,165		31.09% Impervious Area
	Tc Length	Slop	be Velocity Capacity Description
(n	nin) (feet)	(ft/	t) (ft/sec) (cfs)
	6.0		Direct Entry,
			-

(9) OF (9) OF

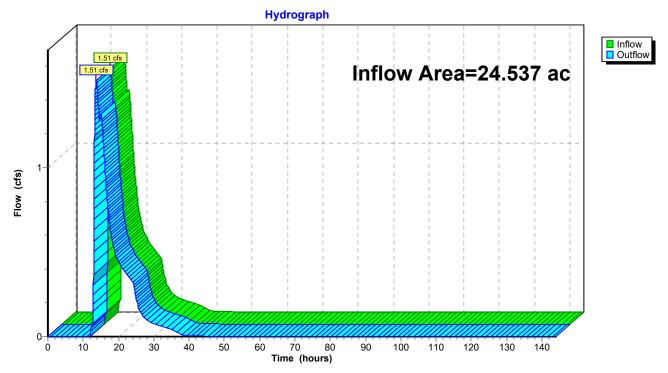

Subcatchment P4c: Developed Site

Summary for Subcatchment P5: Central Overland

Runoff = 0.01 cfs @ 15.70 hrs, Volume= 0.005 af, Depth= 0.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.40"

A	Area (sf)	CN [Description				
	30,577	30 \	30 Woods, Good, HSG A				
	25,063	39 >	75% Gras	s cover, Go	bod, HSG A		
	610	70 \	Voods, Go	od, HSG C			
	12,737	74 >	75% Gras	s cover, Go	bod, HSG C		
*	999	98 E	Decks, HSC	ЭC			
*	487	98 E	Decks, HSC	ΞA			
*	22	98 F	Pavement,	HSG A (OF	FFSITE)		
*	356	39 >	•75% Gras	s cover, Go	bod, HSG A (OFFSITE)		
	70,851	43 \	Veighted A	verage			
	69,343	ç	97.87% Pei	vious Area	l de la constante d		
	1,508	2	2.13% Impe	ervious Are	а		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
15.8	50	0.0100	0.05		Sheet Flow, A-B		
					Woods: Light underbrush n= 0.400 P2= 3.40"		
1.2	140	0.0150	1.97		Shallow Concentrated Flow, B-C		
					Unpaved Kv= 16.1 fps		
17.0	190	Total					

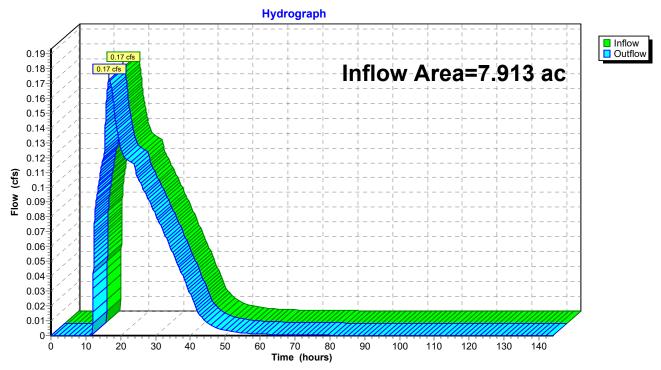


Subcatchment P5: Central Overland

Summary for Reach DP-1: Wetland

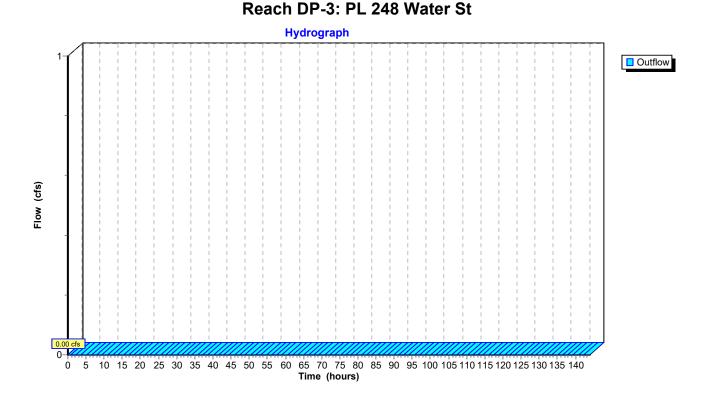
Inflow Area =	=	24.537 ac, 30.85% Impervious, Inflow Depth = 0.38" for 2-yr event
Inflow =	:	1.51 cfs @ 13.69 hrs, Volume= 0.782 af
Outflow =	-	1.51 cfs @ 13.69 hrs, Volume= 0.782 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2



Reach DP-1: Wetland

Summary for Reach DP-2: North PL


Inflow Area	a =	7.913 ac, 23.69% Impervious, Inflow Depth > 0.35" for 2-yr event
Inflow	=	0.17 cfs @ 16.78 hrs, Volume= 0.229 af
Outflow	=	0.17 cfs $\overline{@}$ 16.78 hrs, Volume= 0.229 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2

Reach DP-2: North PL

Summary for Reach DP-3: PL 248 Water St

Summary for Reach DP-4: South PL

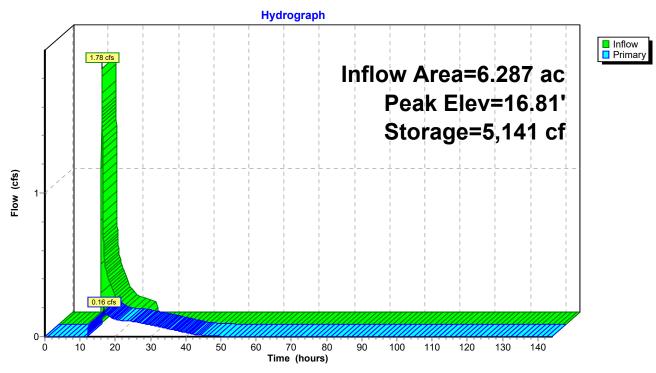
Reach DP-4: South PL

Summary for Pond 1P: Extended Dry Detention Basin

Inflow Area =	6.287 ac, 29.27% Impervious, Inflow D	epth = 0.43" for 2-yr event
Inflow =	1.78 cfs @ 12.13 hrs, Volume=	0.224 af
Outflow =	0.16 cfs @ 16.79 hrs, Volume=	0.224 af, Atten= 91%, Lag= 279.5 min
Primary =	0.16 cfs @ 16.79 hrs, Volume=	0.224 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 16.81' @ 16.79 hrs Surf.Area= 4,444 sf Storage= 5,141 cf

Plug-Flow detention time= 577.0 min calculated for 0.224 af (100% of inflow) Center-of-Mass det. time= 576.1 min (1,496.9 - 920.8)


Volume	In	vert A	/ail.Storage		Storage	Description	
#1	15	.50'	17,95	i9 cf	Custom	n Stage Data ((Prismatic)Listed below (Recalc)
		~ ~ ~ ~			~		
Elevatio		Surf.Are			.Store	Cum.Store	
(fee	et)	(sq-f	t)	(cubio	c-feet)	(cubic-feet	<u>t)</u>
15.5	50	3,41	3		0	(0
16.0	00	3,79	4		1,802	1,802	2
17.0	00	4,59	6		4,195	5,99	7
18.0	00	5,45	6		5,026	11,023	3
18.1	10	6,539			600	11,623	3
19.0	00	7,541			6,336	17,959	9
Device	Routing	9	Invert	Outle	et Device	s	
#1	Primar	y	15.50'	15.0	" Round	l Culvert	
				L= 2	7.0' CPI	P, projecting, r	no headwall, Ke= 0.900
							/ 15.23' S= 0.0100 '/' Cc= 0.900
				n= 0	.013 Cor	rrugated PE. s	mooth interior, Flow Area= 1.23 sf
#2	Device	1	15.50'			U ,	C= 0.600 Limited to weir flow at low heads
#3 Device 1		1	16.75'	1.0'	lona x 2.	20' rise Shar	p-Crested Rectangular Weir
					d Contra		· · · · · · · · · · · · · · · · · · ·
						~ /	

Primary OutFlow Max=0.16 cfs @ 16.79 hrs HW=16.81' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 0.16 cfs of 3.86 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.12 cfs @ 5.33 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 0.05 cfs @ 0.81 fps)

Pond 1P: Extended Dry Detention Basin

Summary for Pond 2P: Infiltration Chambers

Inflow Area =	4.285 ac, 78.01% Impervious, Inflow D	epth = 2.63" for 2-yr event
Inflow =	12.73 cfs @ 12.09 hrs, Volume=	0.939 af
Outflow =	0.49 cfs @ 15.31 hrs, Volume=	0.939 af, Atten= 96%, Lag= 193.5 min
Discarded =	0.21 cfs @ 9.48 hrs, Volume=	0.772 af
Primary =	0.28 cfs @ 15.31 hrs, Volume=	0.167 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 20.81' @ 15.31 hrs Surf.Area= 8,736 sf Storage= 26,452 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 900.9 min (1,691.9 - 791.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.60'	11,916 cf	66.50'W x 131.37'L x 5.75'H Field A
			50,231 cf Overall - 20,441 cf Embedded = 29,790 cf x 40.0% Voids
#2A	17.35'	20,441 cf	Cultec R-902HD x 315 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			315 Chambers in 9 Rows
			Cap Storage= +2.8 cf x 2 x 9 rows = 49.7 cf
		32,357 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	16.00'	24.0" Round Culvert
	-		L= 26.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 16.00' / 15.74' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Device 1	18.40'	1.5" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	20.75'	4.0' long x 2.60' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)
#4	Discarded	16.60'	1.020 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.21 cfs @ 9.48 hrs HW=16.67' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=0.28 cfs @ 15.31 hrs HW=20.81' TW=0.00' (Dynamic Tailwater)

-2=Orifice/Grate (Orifice Controls 0.09 cfs @ 7.38 fps)

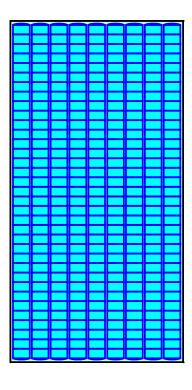
-3=Sharp-Crested Rectangular Weir (Weir Controls 0.19 cfs @ 0.80 fps)

Pond 2P: Infiltration Chambers - Chamber Wizard Field A

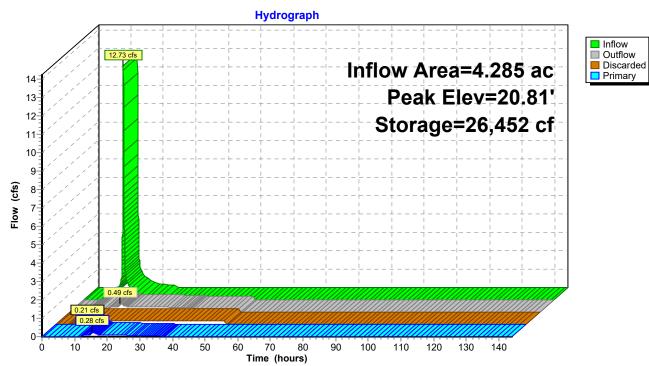
Chamber Model = Cultec R-902HD (Cultec Recharger®902HD)

Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap Cap Storage= +2.8 cf x 2 x 9 rows = 49.7 cf

78.0" Wide + 9.0" Spacing = 87.0" C-C Row Spacing


35 Chambers/Row x 3.67' Long +0.52' Cap Length x 2 = 129.37' Row Length +12.0" End Stone x 2 = 131.37' Base Length 9 Rows x 78.0" Wide + 9.0" Spacing x 8 + 12.0" Side Stone x 2 = 66.50' Base Width 9.0" Stone Base + 48.0" Chamber Height + 12.0" Stone Cover = 5.75' Field Height

315 Chambers x 64.7 cf + 2.8 cf Cap Volume x 2 x 9 Rows = 20,441.2 cf Chamber Storage


50,231.3 cf Field - 20,441.2 cf Chambers = 29,790.1 cf Stone x 40.0% Voids = 11,916.0 cf Stone Storage

Chamber Storage + Stone Storage = 32,357.3 cf = 0.743 af Overall Storage Efficiency = 64.4% Overall System Size = 131.37' x 66.50' x 5.75'

315 Chambers 1,860.4 cy Field 1,103.3 cy Stone

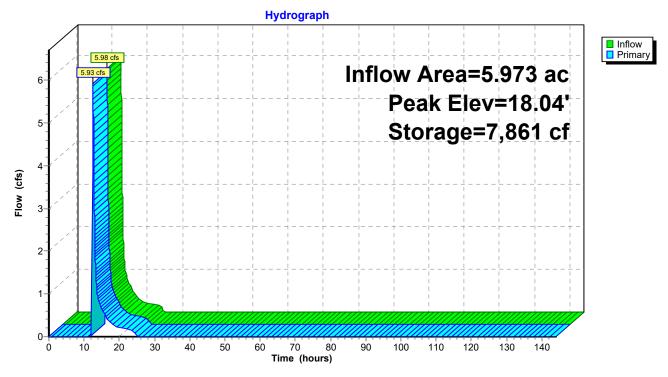
Pond 2P: Infiltration Chambers

Summary for Pond E-P1: Wetland

Inflow Area =	5.973 ac, 62.63% Impervious, Inflow I	Depth = 1.56" for 2-yr event
Inflow =	5.98 cfs @ 12.45 hrs, Volume=	0.775 af
Outflow =	5.93 cfs @ 12.49 hrs, Volume=	0.607 af, Atten= 1%, Lag= 2.1 min
Primary =	5.93 cfs @ 12.49 hrs, Volume=	0.607 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 18.04' @ 12.49 hrs Surf.Area= 12,960 sf Storage= 7,861 cf

Plug-Flow detention time= 126.0 min calculated for 0.607 af (78% of inflow) Center-of-Mass det. time= 42.7 min (905.9 - 863.2)


Volume	I	nvert	Avail.Sto	orage	Storage	Description					
#1	1	7.00'	236,2	53 cf	Custom	Stage Data (F	Prismatic)	isted be	low (Re	ecalc)	
-					01	A A					
Elevatio			.Area		Store.	Cum.Store					
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)					
17.0	00		2,349		0	0					
18.0	00	1:	2,281		7,315	7,315					
19.0	00	2	7,986	2	20,134	27,449					
20.0	00	3	7,607	3	32,797	60,245					
21.0	00	49	9,582	2	43,595	103,840					
22.0	00	6	6,971	5	58,277	162,116					
23.0	00	8	1,302	7	74,137	236,253					
Device	Routir	ng	Invert	Outl	et Device	S					
#1	Prima	ry	18.00'	Asy	mmetrica	al Weir, C= 3.2	7				
				Offs	et (feet)	0.00 10.80 18	.43 23.94	57.50 8	6.92 2	87.08	357.73
				427.	57 483.9	5 528.04 555	.94				
				Elev	. (feet) 2	23.00 22.00 2	1.00 20.00	19.00	18.00	18.00 ⁻	19.00
				20.0	0 21.00	22.00 23.00					

Primary OutFlow Max=5.92 cfs @ 12.49 hrs HW=18.04' TW=12.51' (Dynamic Tailwater) **1=Asymmetrical Weir** (Weir Controls 5.92 cfs @ 0.67 fps)

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

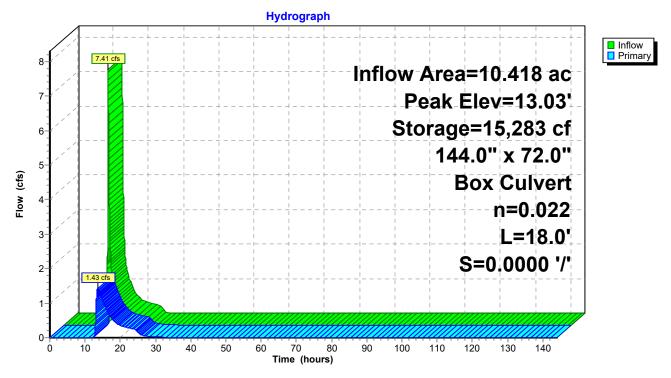
Pond E-P1: Wetland

Summary for Pond E-P2: Wetland

Inflow Area =	10.418 ac, 39.24% Impervious, Inflow D	Depth = 0.98" for 2-yr event
Inflow =	7.41 cfs @ 12.48 hrs, Volume=	0.850 af
Outflow =	1.43 cfs @ 13.68 hrs, Volume=	0.614 af, Atten= 81%, Lag= 72.1 min
Primary =	1.43 cfs @ 13.68 hrs, Volume=	0.614 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 13.03' @ 13.68 hrs Surf.Area= 27,509 sf Storage= 15,283 cf

Plug-Flow detention time= 268.7 min calculated for 0.614 af (72% of inflow) Center-of-Mass det. time= 167.6 min (1,072.5 - 904.8)


Volume	In	vert Ava	il.Storage	Storage	e Description	
#1	12	.00')' 47,617 cf		m Stage Data (Prismatic)Listed below (Recalc)	
Elevatic (fee 12.0 13.0 14.0	et))0)0	Surf.Area (sq-ft) 1,826 27,167 39,073	(cub	c.Store <u>ic-feet)</u> 0 14,497 33,120	Cum.Store (cubic-feet) 0 14,497 47,617	
Device	Routing	g Ir	nvert Out	let Device	ces	
#1	Primary	/ 12		-	72.0" H Box Culvert	
					ox, 0° wingwalls, square crown edge, Ke= 0.700	
					t Invert= 12.83' / 12.83' S= 0.0000 '/' Cc= 0.900 arth, clean & straight, Flow Area= 72.00 sf	
					arti, dean & straight, 110% Alea-12.00 Si	
Primary OutFlow Max-1 43 cfs @ 13 68 brs HW/-13 03' TW-0 00' (Dynamic Tailwater)						

Primary OutFlow Max=1.43 cfs @ 13.68 hrs HW=13.03' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.43 cfs @ 0.80 fps)

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Pond E-P2: Wetland

Time span=0.00-144.00 hrs, dt=0.02 hrs, 7201 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method					
SubcatchmentP-4d: Overland to Wet E	Basin Runoff Area=15,966 sf 0.00% Impervious Runoff Depth=1.39" Tc=6.0 min CN=64 Runoff=0.55 cfs 0.042 af				
SubcatchmentP1: Property offsite	Runoff Area=260,170 sf 62.63% Impervious Runoff Depth=2.63" Flow Length=343' Tc=31.4 min CN=80 Runoff=10.20 cfs 1.310 af				
SubcatchmentP2: P2	Runoff Area=193,654 sf 7.83% Impervious Runoff Depth=1.39" Flow Length=315' Tc=15.1 min CN=64 Runoff=5.02 cfs 0.515 af				
SubcatchmentP3: SW Property	Runoff Area=256,545 sf 1.84% Impervious Runoff Depth=0.00" Flow Length=683' Tc=13.5 min CN=31 Runoff=0.01 cfs 0.001 af				
SubcatchmentP4: Central Overland	Runoff Area=171,811 sf 0.76% Impervious Runoff Depth=0.14" Flow Length=190' Tc=17.0 min CN=39 Runoff=0.08 cfs 0.047 af				
SubcatchmentP4a: Developed Site	Runoff Area=170,352 sf 78.81% Impervious Runoff Depth=3.90" Tc=6.0 min CN=93 Runoff=16.87 cfs 1.272 af				
SubcatchmentP4b: Developed Site	Runoff Area=16,288 sf 69.59% Impervious Runoff Depth=3.80" Tc=6.0 min CN=92 Runoff=1.58 cfs 0.118 af				
SubcatchmentP4c: Developed Site	Runoff Area=257,881 sf 31.09% Impervious Runoff Depth=1.01" Tc=6.0 min CN=58 Runoff=5.83 cfs 0.497 af				
SubcatchmentP5: Central Overland	Runoff Area=70,851 sf 2.13% Impervious Runoff Depth=0.27" Flow Length=190' Tc=17.0 min CN=43 Runoff=0.12 cfs 0.037 af				
Reach DP-1: Wetland	Inflow=9.08 cfs 2.039 af Outflow=9.08 cfs 2.039 af				
Reach DP-2: North PL	Inflow=1.53 cfs 0.576 af Outflow=1.53 cfs 0.576 af				
Reach DP-3: PL 248 Water St	Outflow=0.00 cfs 0.000 af				
Reach DP-4: South PL	Outflow=0.00 cfs 0.000 af				
Pond 1P: Extended Dry Detention Basi	in Peak Elev=17.33' Storage=7,544 cf Inflow=6.38 cfs 0.540 af Outflow=1.41 cfs 0.539 af				
Pond 2P: Infiltration Chambers Discarded=0.2	Peak Elev=21.33' Storage=28,780 cf Inflow=18.45 cfs 1.390 af 21 cfs 0.821 af Primary=5.67 cfs 0.570 af Outflow=5.87 cfs 1.391 af				
Pond E-P1: Wetland	Peak Elev=18.06' Storage=8,104 cf Inflow=10.20 cfs 1.310 af Outflow=10.19 cfs 1.142 af				

Type III 24-hr 10-yr Rainfall=4.70"

Printed 6/7/2021

Page 35

215-181 Post-DEV (R3)*Ty*Prepared by McKenzie Engineering Group, Inc.HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

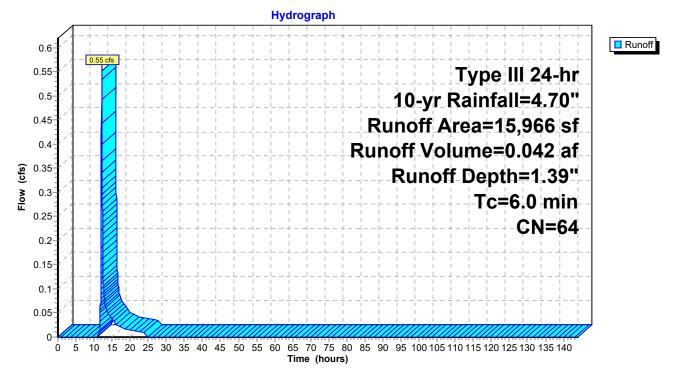
215-181 Post-DEV (R3)	Type III 24-hr	10-yr Rainfall=4.70"
Prepared by McKenzie Engineering Group, Inc.		Printed 6/7/2021
HvdroCAD® 10.10-5a s/n 00452 © 2020 HvdroCAD Software Solutions LL	_C	Page 36

Pond E-P2: Wetland

Peak Elev=13.30' Storage=23,126 cf Inflow=13.79 cfs 1.657 af 144.0" x 72.0" Box Culvert n=0.022 L=18.0' S=0.0000 '/' Outflow=6.90 cfs 1.421 af

6/7/2021 Page 36

Total Runoff Area = 32.450 ac Runoff Volume = 3.841 af Average Runoff Depth = 1.42" 70.90% Pervious = 23.006 ac 29.10% Impervious = 9.444 ac

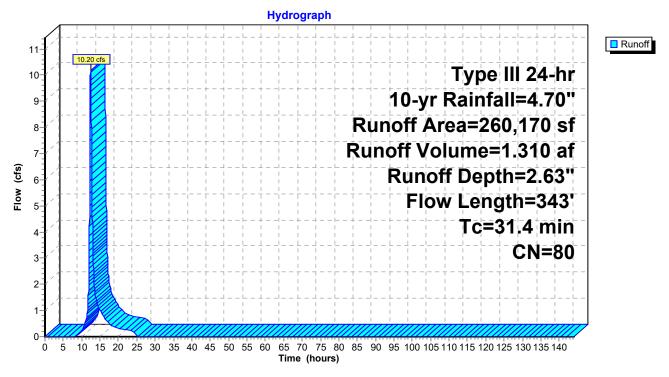

Summary for Subcatchment P-4d: Overland to Wet Basin

Runoff = 0.55 cfs @ 12.10 hrs, Volume= 0.042 af, Depth= 1.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

A	rea (sf)	CN	Description						
	4,551	39	>75% Gras	s cover, Go	ood, HSG A				
	11,415	74	>75% Gras	>75% Grass cover, Good, HSG C					
	15,966	64	Weighted A	verage					
	15,966		100.00% Pervious Area						
Тс	Length	Slop	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
6.0					Direct Entry,				
					- · · · · · · · · · · · · · · · · · · ·				

Subcatchment P-4d: Overland to Wet Basin


Summary for Subcatchment P1: Property offsite

Runoff = 10.20 cfs @ 12.44 hrs, Volume= 1.310 af, Depth= 2.63"

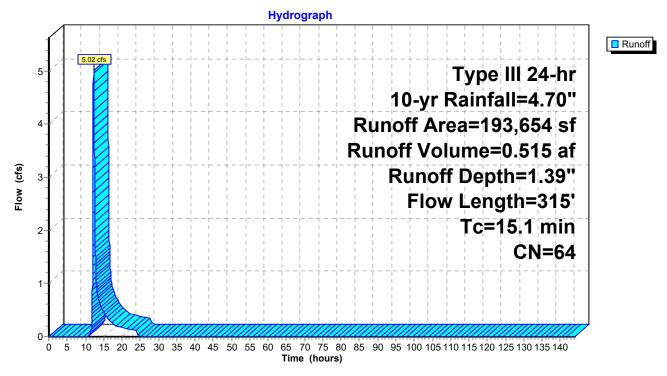
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

	Α	rea (sf)	CN D	CN Description					
*	1	42,754	89 L	Urban commercial, 85% imp, HSG A (OFFSITE)					
*		31,587	30 V	Woods, Good, HSG A (OFFSITE)					
*		48,943	94 L	Urban commercial, 85% imp, HSG C (OFFSITE)					
*		8,690	78 V	Wetlands/woods, HSG A (OFFSITE)					
*		25,996	70 V) Woods, Good, HSG C (OFFSITE)					
*		2,200	78 V	78 Wetlands/woods, HSG C (OFFSITE)					
	2	260,170 80 Weighted Average							
	97,228 37.37% Pervious Area				vious Area				
	162,942		62.63% Impervious Area						
	-		<u></u>		• ••				
	ŢĊ	Length	Slope	Velocity	Capacity	Description			
			15.15.	101	· / • ·	•			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	22.8	(feet) 50	(ft/ft) 0.0040	(ft/sec) 0.04	(cfs)	Sheet Flow, Start			
	22.8			0.04	(cfs)	Woods: Light underbrush n= 0.400 P2= 3.40"			
					(cfs)	Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C			
	22.8 6.6	50	0.0040 0.0040	0.04	(cfs)	Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps			
	22.8	50	0.0040	0.04	(cfs)	Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND			
	22.8 6.6	50 126	0.0040 0.0040	0.04 0.32	(cfs)	Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps			
	22.8 6.6	50 126	0.0040 0.0040	0.04 0.32	(cfs)	Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND			

Subcatchment P1: Property offsite

Summary for Subcatchment P2: P2

Runoff = 5.02 cfs @ 12.23 hrs, Volume= 0.515 af, Depth= 1.39"

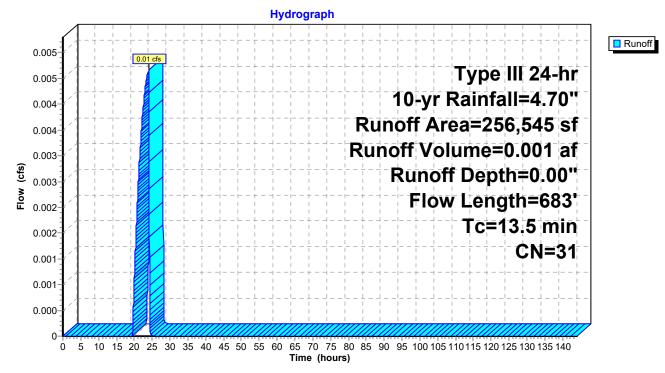

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

	A	rea (sf)	CN E	Description					
*		9,050	98 F	8 Paved parking, HSG A (OFFSITE)					
*		49,865		Woods, Good, HSG A (OFFSITE)					
*		20,149	78 V	Wetlands/woods. HSG A (OFFSITE)					
*		4,604	98 F	Paved parking, HSG C (OFFSITE)					
*		41,546	70 V	Woods, Good, HSG C (OFFSITE)					
*		3,605	78 V	Wetlands/woods, HSG C (OFFSITE)					
		11,149	70 V	Woods, Good, HSG C					
*		5,924	78 V	Wetlands/woods, HSG C					
*		28,611	78 V	78 Wetlands/woods, HSG A					
		3,016			od, HSG A				
*		1,504		Decks, HSC					
		14,631	74 >	74 >75% Grass cover, Good, HSG C					
	1	93,654		Veighted A					
	178,496 92.17% Pervious Area			92.17% Per	rvious Area				
		15,158 7.83% Impervious Area				а			
	_		<u> </u>						
	ŢĊ	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	12.2	50	0.0190	0.07		Sheet Flow, START			
						Woods: Light underbrush n= 0.400 P2= 3.40"			
	1.5	116	0.0690	1.31		Shallow Concentrated Flow, B-C			
						Woodland Kv= 5.0 fps			
	0.1	20	0.0200	2.87		Shallow Concentrated Flow, C-D			
						Paved Kv= 20.3 fps			
	1.3	129	0.1100	1.66		Shallow Concentrated Flow, D-WETLAND			
						Woodland Kv= 5.0 fps			
	15.1	315	Total						

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Subcatchment P2: P2


Summary for Subcatchment P3: SW Property

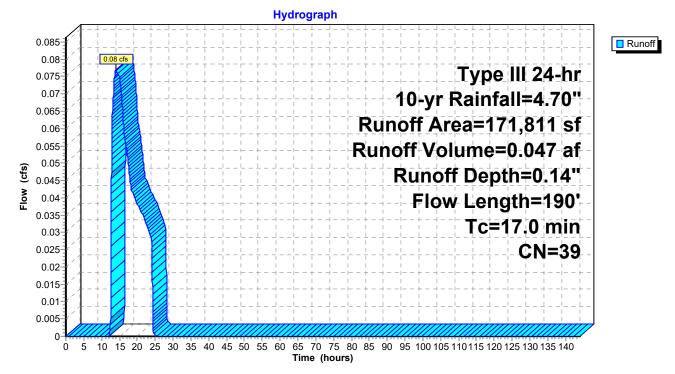
Runoff = 0.01 cfs @ 24.02 hrs, Volume= 0.001 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

_	A	rea (sf)	CN Description						
	1	57,110	30 V	30 Woods, Good, HSG A					
*		94,725	30 V	Woods, Fair, HSG A (OFFSITE)					
*		4,710	98 li	98 Impervious, HSG A (OFFSITE)					
256,545 31 Weighted Average					verage				
251,835 98.16% Pervious Area				8.16% Pei	vious Area				
4,710 1.84% Impervious Area					ervious Area	а			
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.2	50	0.0300	0.08		Sheet Flow, Start Off Property			
						Woods: Light underbrush n= 0.400 P2= 3.40"			
	3.3	633	0.0400	3.22		Shallow Concentrated Flow, To Wetland			
						Unpaved Kv= 16.1 fps			
	13.5	683	Total						

Subcatchment P3: SW Property

Summary for Subcatchment P4: Central Overland

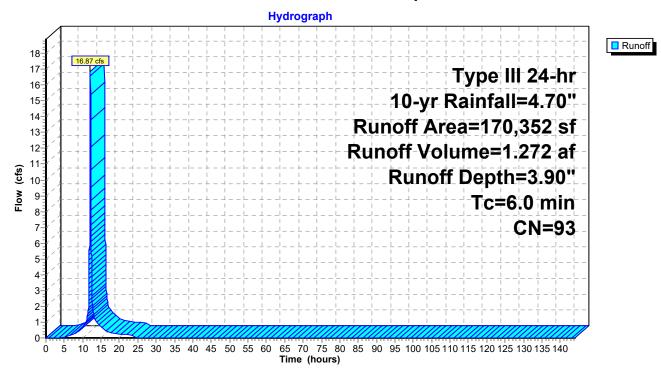

Runoff = 0.08 cfs @ 13.92 hrs, Volume= 0.047 af, Depth= 0.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

	A	rea (sf)	CN	Description		
	104,548 30 Woods, Good, HSG A					
	41,769 39 >75% Grass cover, Good, HSG A					
		2,502	76	Gravel road	ls, HSG A	
		21,686	74	>75% Gras	s cover, Go	bod, HSG C
*		767	98	Decks, HS0	ЭC	
*		539	98	Decks, HSC	GΑ	
	171,811 39 Weighted Average					
	170,505 99.24% Pervious Area			99.24% Pei	rvious Area	1
		1,306		0.76% Impe	ervious Are	а
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.8	50	0.0100	0.05		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.2	140	0.0150	1.97		Shallow Concentrated Flow, B-C
						Unpaved Kv= 16.1 fps
	4- 0	100	-			

17.0 190 Total

Subcatchment P4: Central Overland

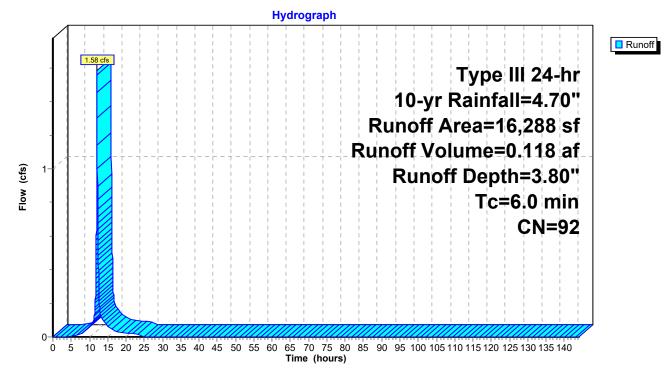

Summary for Subcatchment P4a: Developed Site

Runoff = 16.87 cfs @ 12.08 hrs, Volume= 1.272 af, Depth= 3.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

	Area (s	f) CN	I D	Description				
	32,44	5 98	3 R	oofs, HSG	βA			
	36,09	5 74	L >	75% Gras	s cover, Go	ood, HSG C		
	64,68	98 98	8 R	oofs, HSG	СС			
*	35,35	60 98	3 P	aved park	ing, HSG C	;		
*	1,77	7 98	B Decks, HSG Č					
	170,35	52 93	93 Weighted Average					
	36,09	95	2					
	134,25	257 78.81% Impervious Area				ea		
	Tc Leng	gth Sl	ope	Velocity	Capacity	Description		
	<u>(min) (fe</u>	et) (1	ft/ft)	(ft/sec)	(cfs)			
	6.0					Direct Entry,		

Subcatchment P4a: Developed Site


Summary for Subcatchment P4b: Developed Site

Runoff = 1.58 cfs @ 12.08 hrs, Volume= 0.118 af, Depth= 3.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

	A	rea (sf)	CN	Description					
		191	98	Roofs, HSG A					
		7,608	98	Roofs, HSC	ЭC				
*		3,536	98	Paved park	ing, HSG C				
		3,501	74	>75% Gras	s cover, Go	od, HSG C			
		1,452	89	Gravel roads, HSG C					
		16,288	92	92 Weighted Average					
		4,953		30.41% Pervious Area					
		11,335	69.59% Impervious Area						
	_								
	Tc	Length	Slop		Capacity	Description			
(r	min)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
	6.0					Direct Entry,			

Subcatchment P4b: Developed Site

Summary for Subcatchment P4c: Developed Site

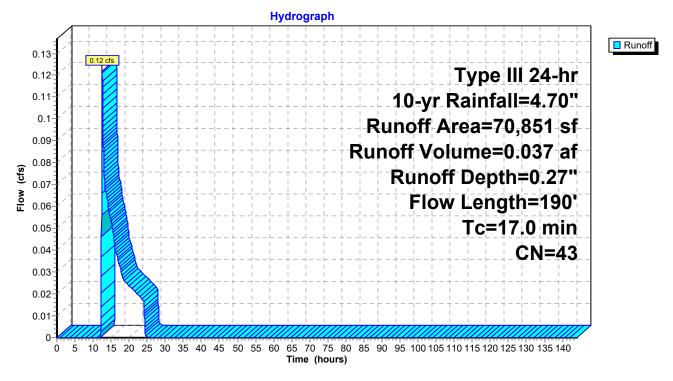
Runoff = 5.83 cfs @ 12.10 hrs, Volume= 0.497 af, Depth= 1.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

	Area (sf)	CN	Description					
	72,562	39	>75% Grass cover, Good, HSG A					
	48,621	98	Paved parking, HSG A					
*	599	98	Walks, HSG Å					
*	2,713	98	Decks, HSG A					
	10,062	74	>75% Grass cover, Good, HSG C					
*	13,564	98	Paved parking, HSG C					
*	491	98	Walks, HSG C					
*	406	70	Woods, Good, HSG C (OFFSITE)					
*	33,887	30	Woods, Good, HSG A (OFFSITE)					
*	60,799	39	>75% Grass cover, Good, HSG A (OFFSITE)					
*	3,744	98	Pavement, HSG A (OFFSITE)					
*	2,312	98	Paved parking, HSG A (OFFSITE)					
*	8,121	98	Impervious, HSG A (OFFSITE)					
	257,881	58	Weighted Average					
	177,716		68.91% Pervious Area					
	80,165		31.09% Impervious Area					
	Tc Length	Slop						
	(min) (feet)	(ft/	t) (ft/sec) (cfs)					
	6.0		Direct Entry,					
			-					

Hydrograph Runoff 5.83 cfs 6 Type III 24-hr 10-yr Rainfall=4.70" 5-Runoff Area=257,881 sf Runoff Volume=0.497 af 4 Runoff Depth=1.01" Flow (cfs) Tc=6.0 min 3-CN=58 2-1-0-5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 Ó Time (hours)

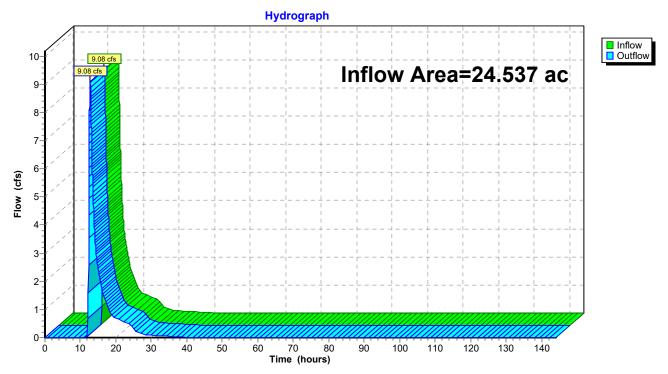
Subcatchment P4c: Developed Site


Summary for Subcatchment P5: Central Overland

Runoff = 0.12 cfs @ 12.56 hrs, Volume= 0.037 af, Depth= 0.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.70"

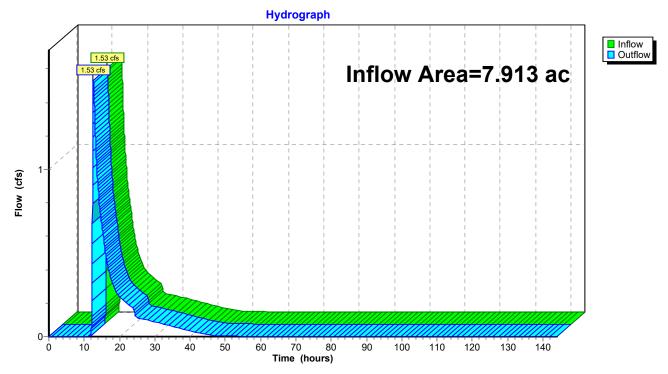
	Area (sf)	CN	Description					
	30,577	30	Woods, Go	od, HSG A				
	25,063	39	39 >75% Grass cover, Good, HSG A					
	610	70	Woods, Good, HSG C					
	12,737	74 :	>75% Grass cover, Good, HSG C					
*	999	98	Decks, HSG C					
*	487	98	·					
*	22	98	Pavement,	HSG A (OF	FFSITE)			
*	356	39 :						
	70,851	43	Weighted A	verage				
	69,343	9	97.87% Pei	rvious Area				
	1,508	:	2.13% Impe	ervious Are	а			
Т	c Length	Slope		Capacity	Description			
(mir	n) (feet)	(ft/ft)	(ft/sec)	(cfs)				
15.	8 50	0.0100	0.05		Sheet Flow, A-B			
					Woods: Light underbrush n= 0.400 P2= 3.40"			
1.	2 140	0.0150	1.97		Shallow Concentrated Flow, B-C			
					Unpaved Kv= 16.1 fps			
17.	0 190	Total						


Subcatchment P5: Central Overland

Summary for Reach DP-1: Wetland

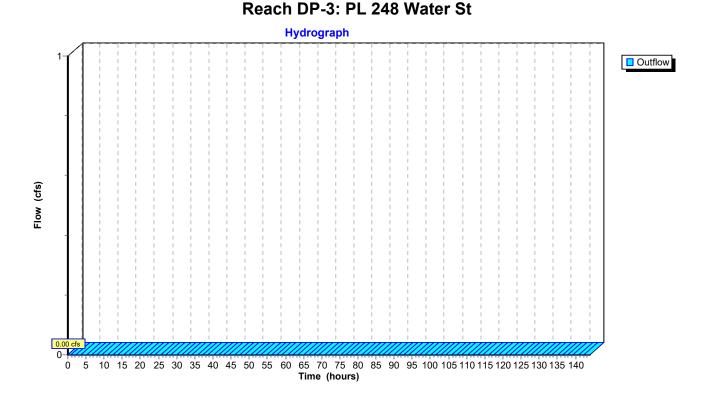
Inflow Area =	24.537 ac, 30.85% Impervious, Inflow D	Depth = 1.00" for 10-yr event
Inflow =	9.08 cfs @ 12.77 hrs, Volume=	2.039 af
Outflow =	9.08 cfs @ 12.77 hrs, Volume=	2.039 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2



Reach DP-1: Wetland

Summary for Reach DP-2: North PL


Inflow Area	a =	7.913 ac, 23.69% Impervious, Inflow Depth = 0.87" for 10-yr event
Inflow	=	1.53 cfs @ 12.60 hrs, Volume= 0.576 af
Outflow	=	1.53 cfs @ 12.60 hrs, Volume= 0.576 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2

Reach DP-2: North PL

Summary for Reach DP-3: PL 248 Water St

Summary for Reach DP-4: South PL

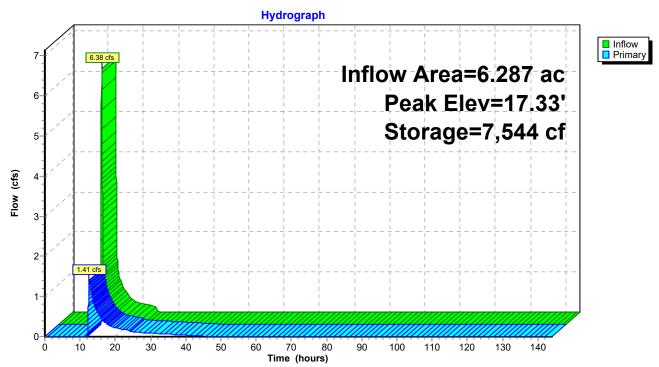
Reach DP-4: South PL

Summary for Pond 1P: Extended Dry Detention Basin

Inflow Area =	6.287 ac, 29.27% Impervious, Inflow [Depth = 1.03" for 10-yr event
Inflow =	6.38 cfs @ 12.10 hrs, Volume=	0.540 af
Outflow =	1.41 cfs @ 12.61 hrs, Volume=	0.539 af, Atten= 78%, Lag= 30.3 min
Primary =	1.41 cfs @ 12.61 hrs, Volume=	0.539 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 17.33' @ 12.61 hrs Surf.Area= 4,877 sf Storage= 7,544 cf

Plug-Flow detention time= 290.1 min calculated for 0.539 af (100% of inflow) Center-of-Mass det. time= 290.6 min (1,176.2 - 885.6)


Volume	Inve	ert Avail.Sto	rage Storage	e Description	
#1	15.5	50' 17,9	59 cf Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(feet	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
15.5	0	3,413	0	0	
16.0	0	3,794	1,802	1,802	
17.0	0	4,596	4,195	5,997	
18.0	0	5,456	5,026	11,023	
18.1	0	6,539	600	11,623	
19.0	0	7,541	6,336	17,959	
Device	Routing	Invert	Outlet Device	es	
#1 #2 #3	Primary Device 1 Device 1		Inlet / Outlet n= 0.013 Co 2.0'' Vert. Or	P, projecting, no Invert= 15.50' / 1 rrugated PE, sm ifice/Grate C= .20' rise Sharp-	headwall, Ke= 0.900 5.23' S= 0.0100 '/' Cc= 0.900 ooth interior, Flow Area= 1.23 sf 0.600 Limited to weir flow at low heads Crested Rectangular Weir

Primary OutFlow Max=1.41 cfs @ 12.61 hrs HW=17.33' TW=0.00' (Dynamic Tailwater)

-**1=Culvert** (Passes 1.41 cfs of 5.11 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.14 cfs @ 6.36 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 1.27 cfs @ 2.48 fps)

Pond 1P: Extended Dry Detention Basin

Summary for Pond 2P: Infiltration Chambers

Inflow Area =	4.285 ac, 78.01% Impervious, Inflow	Depth = 3.89" for 10-yr event
Inflow =	18.45 cfs @ 12.08 hrs, Volume=	1.390 af
Outflow =	5.87 cfs @ 12.39 hrs, Volume=	1.391 af, Atten= 68%, Lag= 18.1 min
Discarded =	0.21 cfs @ 8.36 hrs, Volume=	0.821 af
Primary =	5.67 cfs @ 12.39 hrs, Volume=	0.570 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 21.33' @ 12.39 hrs Surf.Area= 8,736 sf Storage= 28,780 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 667.0 min (1,447.6 - 780.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.60'	11,916 cf	66.50'W x 131.37'L x 5.75'H Field A
			50,231 cf Overall - 20,441 cf Embedded = 29,790 cf x 40.0% Voids
#2A	17.35'	20,441 cf	Cultec R-902HD x 315 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			315 Chambers in 9 Rows
			Cap Storage= +2.8 cf x 2 x 9 rows = 49.7 cf
		32,357 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	16.00'	24.0" Round Culvert
	-		L= 26.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 16.00' / 15.74' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Device 1	18.40'	1.5" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	20.75'	4.0' long x 2.60' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)
#4	Discarded	16.60'	1.020 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.21 cfs @ 8.36 hrs HW=16.67' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=5.65 cfs @ 12.39 hrs HW=21.33' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Passes 5.65 cfs of 24.84 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.10 cfs @ 8.15 fps)

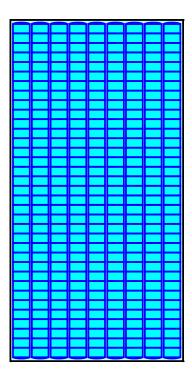
-3=Sharp-Crested Rectangular Weir (Weir Controls 5.55 cfs @ 2.48 fps)

Pond 2P: Infiltration Chambers - Chamber Wizard Field A

Chamber Model = Cultec R-902HD (Cultec Recharger®902HD)

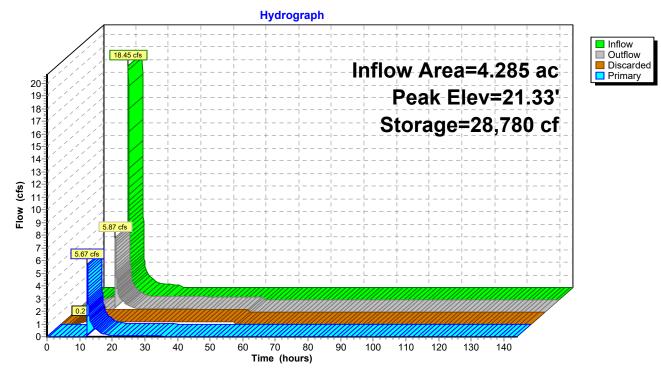
Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap Cap Storage= +2.8 cf x 2 x 9 rows = 49.7 cf

78.0" Wide + 9.0" Spacing = 87.0" C-C Row Spacing


35 Chambers/Row x 3.67' Long +0.52' Cap Length x 2 = 129.37' Row Length +12.0" End Stone x 2 = 131.37' Base Length 9 Rows x 78.0" Wide + 9.0" Spacing x 8 + 12.0" Side Stone x 2 = 66.50' Base Width 9.0" Stone Base + 48.0" Chamber Height + 12.0" Stone Cover = 5.75' Field Height

315 Chambers x 64.7 cf + 2.8 cf Cap Volume x 2 x 9 Rows = 20,441.2 cf Chamber Storage

50,231.3 cf Field - 20,441.2 cf Chambers = 29,790.1 cf Stone x 40.0% Voids = 11,916.0 cf Stone Storage


Chamber Storage + Stone Storage = 32,357.3 cf = 0.743 af Overall Storage Efficiency = 64.4% Overall System Size = 131.37' x 66.50' x 5.75'

315 Chambers 1,860.4 cy Field 1,103.3 cy Stone

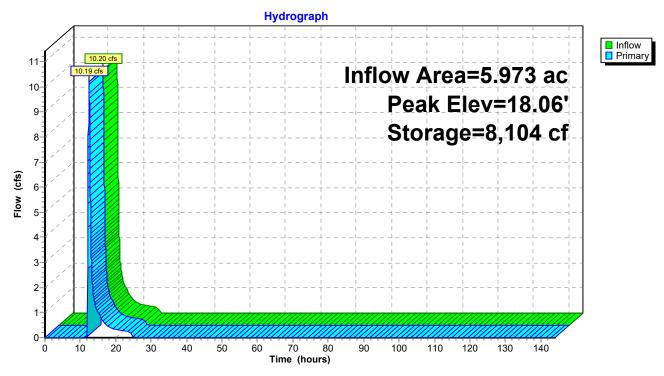
Pond 2P: Infiltration Chambers

Summary for Pond E-P1: Wetland

Inflow Area =	5.973 ac, 62.63% Impervious, Inflow	Depth = 2.63" for 10-yr event
Inflow =	10.20 cfs @ 12.44 hrs, Volume=	1.310 af
Outflow =	10.19 cfs @ 12.46 hrs, Volume=	1.142 af, Atten= 0%, Lag= 0.8 min
Primary =	10.19 cfs @ 12.46 hrs, Volume=	1.142 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 18.06' @ 12.46 hrs Surf.Area= 13,252 sf Storage= 8,104 cf

Plug-Flow detention time= 85.3 min calculated for 1.142 af (87% of inflow) Center-of-Mass det. time= 27.0 min (875.0 - 848.0)


Volume	I	nvert	Avail.Sto	orage	Storage	Description	
#1	1	7.00'	236,2	53 cf	Custom	n Stage Data (P	rismatic)Listed below (Recalc)
					<u>.</u>	0 0	
Elevatio			.Area		Store.	Cum.Store	
(fee	et)		(sq-ft)	(cubi	c-feet)	(cubic-feet)	
17.0	00		2,349		0	0	
18.0	00	1	2,281		7,315	7,315	
19.0	00	27,986 37,607 49,582 66,971		20,134 27,449 32,797 60,245 43,595 103,840			
20.0	00					60,245	
21.0	00					103,840	
22.0	00			Ę	58,277	162,116	62,116
23.0	00	8	81,302		74,137	236,253	
Device	Routi	ng	Invert	Outl	et Device	S	
#1	Prima	iry	18.00'	Asy	mmetrica	al Weir, C= 3.27	7
		•		Offs	et (feet)	0.00 10.80 18.4	43 23.94 57.50 86.92 287.08 357.73
				427.	.57`483.9	5 528.04 555.9	94
				Elev	/. (feet) 2	23.00 22.00 21	.00 20.00 19.00 18.00 18.00 19.00
					• •	22.00 23.00	

Primary OutFlow Max=10.18 cfs @ 12.46 hrs HW=18.06' TW=13.06' (Dynamic Tailwater) **1=Asymmetrical Weir** (Weir Controls 10.18 cfs @ 0.80 fps)

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

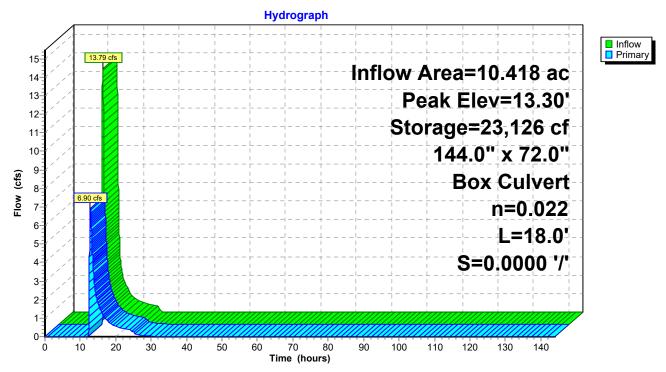
Pond E-P1: Wetland

Summary for Pond E-P2: Wetland

Inflow Area =	10.418 ac, 39.24% Impervious, Inflow	Depth = 1.91" for 10-yr event
Inflow =	13.79 cfs @ 12.40 hrs, Volume=	1.657 af
Outflow =	6.90 cfs @ 12.84 hrs, Volume=	1.421 af, Atten= 50%, Lag= 26.5 min
Primary =	6.90 cfs @ 12.84 hrs, Volume=	1.421 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 13.30' @ 12.84 hrs Surf.Area= 30,717 sf Storage= 23,126 cf

Plug-Flow detention time= 154.2 min calculated for 1.421 af (86% of inflow) Center-of-Mass det. time= 90.6 min (965.9 - 875.4)


Volume	In	vert A	vail.Sto	rage	Storage I	Description	
#1	12	2.00'	47,61	l7 cf	Custom	Stage Data (Pr	ismatic)Listed below (Recalc)
Elevatio (fee 12.0 13.0 14.0	et) 00 00	Surf.Are (sq-f 1,82 27,16 39.07	t) 6 7	(cubic	Store <u>-feet)</u> 0 4,497 3,120	Cum.Store (cubic-feet) 0 14,497 47,617	
Device	Routin	,	Invert		s, rzo et Devices	,	
<u>Device</u> #1	Primar	0	12.83'	144.0 L= 18 Inlet)'' W x 72 3.0' Box, / Outlet In	. 0" H Box Cul 0° wingwalls, s overt= 12.83' / 12	vert quare crown edge, Ke= 0.700 2.83' S= 0.0000 '/' Cc= 0.900 ght, Flow Area= 72.00 sf
Drimary	OutElo	Way-6	00 cfc (จ 12 ผ	A hre HM	13 30' TW-0	00' (Dynamic Tailwater)

Primary OutFlow Max=6.90 cfs @ 12.84 hrs HW=13.30' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 6.90 cfs @ 1.64 fps)

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Pond E-P2: Wetland

Time span=0.00-144.00 hrs, dt=0.02 hrs, 7201 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method									
SubcatchmentP-4d: Overland to Wet Basin Runoff Area=15,966 sf 0.00% Impervious Runoff Depth=1.98" Tc=6.0 min CN=64 Runoff=0.82 cfs 0.061 af									
SubcatchmentP1: Property offsite	Runoff Area=260,170 sf 62.63% Impervious Runoff Depth=3.42" Flow Length=343' Tc=31.4 min CN=80 Runoff=13.24 cfs 1.703 af								
SubcatchmentP2: P2	Runoff Area=193,654 sf 7.83% Impervious Runoff Depth=1.98" Flow Length=315' Tc=15.1 min CN=64 Runoff=7.45 cfs 0.735 af								
SubcatchmentP3: SW Property	Runoff Area=256,545 sf 1.84% Impervious Runoff Depth=0.06" Flow Length=683' Tc=13.5 min CN=31 Runoff=0.04 cfs 0.028 af								
SubcatchmentP4: Central Overland	Runoff Area=171,811 sf 0.76% Impervious Runoff Depth=0.34" Flow Length=190' Tc=17.0 min CN=39 Runoff=0.38 cfs 0.111 af								
SubcatchmentP4a: Developed Site	Runoff Area=170,352 sf 78.81% Impervious Runoff Depth=4.79" Tc=6.0 min CN=93 Runoff=20.45 cfs 1.560 af								
SubcatchmentP4b: Developed Site	Runoff Area=16,288 sf 69.59% Impervious Runoff Depth=4.68" Tc=6.0 min CN=92 Runoff=1.93 cfs 0.146 af								
SubcatchmentP4c: Developed Site	Runoff Area=257,881 sf 31.09% Impervious Runoff Depth=1.51" Tc=6.0 min CN=58 Runoff=9.50 cfs 0.746 af								
SubcatchmentP5: Central Overland	Runoff Area=70,851 sf 2.13% Impervious Runoff Depth=0.54" Flow Length=190' Tc=17.0 min CN=43 Runoff=0.37 cfs 0.073 af								
Reach DP-1: Wetland	Inflow=15.56 cfs 3.034 af Outflow=15.56 cfs 3.034 af								
Reach DP-2: North PL	Inflow=3.61 cfs 0.879 af Outflow=3.61 cfs 0.879 af								
Reach DP-3: PL 248 Water St	Outflow=0.00 cfs 0.000 af								
Reach DP-4: South PL	Outflow=0.00 cfs 0.000 af								
Pond 1P: Extended Dry Detention Basi	n Peak Elev=17.89' Storage=10,451 cf Inflow=10.32 cfs 0.807 af Outflow=3.25 cfs 0.807 af								
Pond 2P: Infiltration Chambers Discarded=0.21 c	Peak Elev=21.74' Storage=30,236 cf Inflow=22.38 cfs 1.706 af fs 0.844 af Primary=12.41 cfs 0.862 af Outflow=12.61 cfs 1.706 af								
Pond E-P1: Wetland	Peak Elev=18.07' Storage=8,260 cf Inflow=13.24 cfs 1.703 af								

215-181 Post-DEV (R3)*Typ*Prepared by McKenzie Engineering Group, Inc.HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-yr Rainfall=5.60" Printed 6/7/2021 Page 63

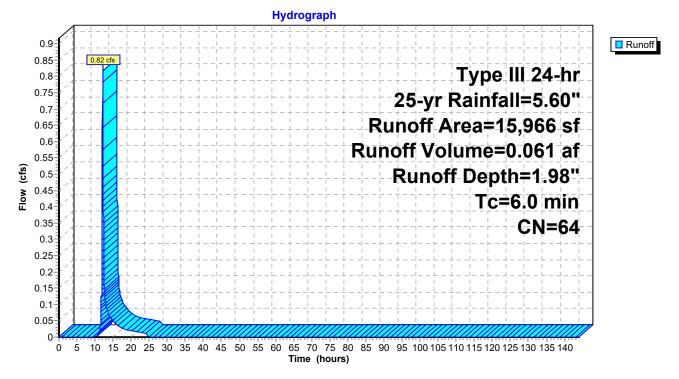
Outflow=13.23 cfs 1.535 af

215-181 Post-DEV (R3)	Type III 24-hr 25-yr Rainfall=5.6	0"
Prepared by McKenzie Engineering Group, Inc.	Printed 6/7/202	21
HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions L	LC Page 6	<u>54</u>

Pond E-P2: Wetland

Peak Elev=13.47' Storage=28,503 cf Inflow=18.49 cfs 2.270 af 144.0" x 72.0" Box Culvert n=0.022 L=18.0' S=0.0000 '/' Outflow=11.74 cfs 2.034 af

Total Runoff Area = 32.450 ac Runoff Volume = 5.162 af Average Runoff Depth = 1.91" 70.90% Pervious = 23.006 ac 29.10% Impervious = 9.444 ac

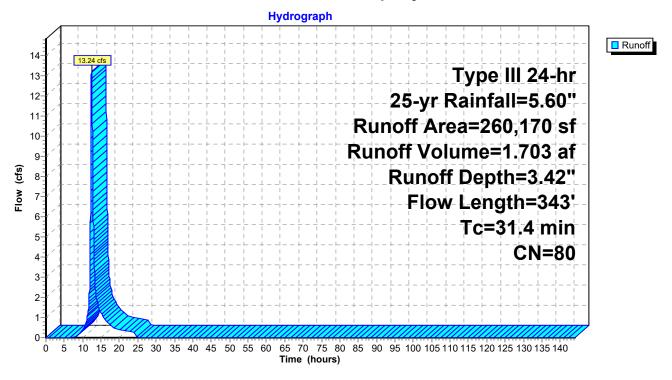

Summary for Subcatchment P-4d: Overland to Wet Basin

Runoff = 0.82 cfs @ 12.09 hrs, Volume= 0.061 af, Depth= 1.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

Α	rea (sf)	CN	Description		
	4,551	39	>75% Grass	s cover, Go	ood, HSG A
	11,415	74	>75% Grass	s cover, Go	ood, HSG C
	15,966	64	Weighted A	verage	
	15,966		100.00% Pe	ervious Are	ea
Tc	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft	:) (ft/sec)	(cfs)	
6.0					Direct Entry,

Subcatchment P-4d: Overland to Wet Basin


Summary for Subcatchment P1: Property offsite

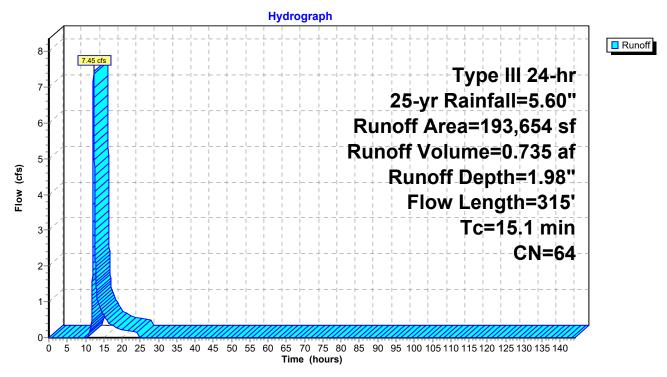
Runoff = 13.24 cfs @ 12.44 hrs, Volume= 1.703 af, Depth= 3.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

	A	rea (sf)	CN E	Description							
*	1	42,754	89 l								
*		31,587	30 V	Woods, Good, HSG A (OFFSITE)							
*		48,943	94 l	Jrban comi	mercial, 85	% imp, HSG C (OFFSITE)					
*		8,690				A (OFFSITE)					
*		25,996				(OFFSITE)					
*		2,200	78 V	Vetlands/w	oods, HSG	C (OFFSITE)					
	2	60,170	80 V	Veighted A	verage						
		97,228	3	7.37% Per	rvious Area						
	1	62,942	6	62.63% Imp	pervious Ar	ea					
	Тс	Length	Slope	Velocity	Capacity	Description					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
			•	,		Description Sheet Flow, Start					
	(min)	(feet)	(ft/ft)	(ft/sec)							
_	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C					
_	(min) 22.8 6.6	(feet) 50	(ft/ft) 0.0040	(ft/sec) 0.04		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps					
	(min) 22.8	(feet) 50	(ft/ft) 0.0040	(ft/sec) 0.04		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND					
_	(min) 22.8 6.6	(feet) 50 126	(ft/ft) 0.0040 0.0040	(ft/sec) 0.04 0.32		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps					
_	(min) 22.8 6.6	(feet) 50 126	(ft/ft) 0.0040 0.0040	(ft/sec) 0.04 0.32		Sheet Flow, Start Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND					

Subcatchment P1: Property offsite

Summary for Subcatchment P2: P2

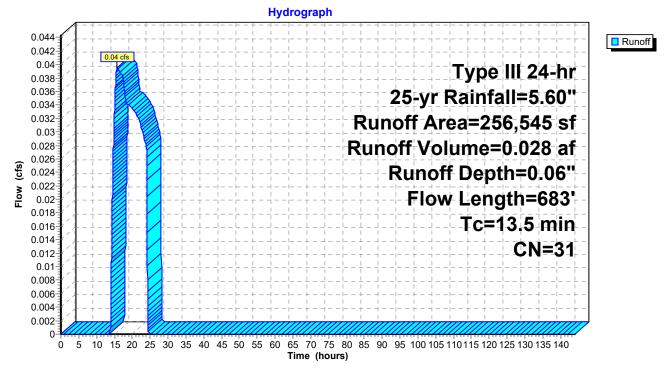

Runoff = 7.45 cfs @ 12.22 hrs, Volume= 0.735 af, Depth= 1.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

	A	rea (sf)	CN [Description						
*		9,050	98 F	Paved park	ing, HSG A	A (OFFSITE)				
*		49,865								
*		20,149	78 \	Vetlands/w	oods. HSG	GĂ (OFFSITE)				
*		4,604	98 F	Paved park	ing, HSG C	C (OFFSITE)				
*		41,546	70 \	Voods, Go	od, HSG C	(OFFSITE)				
*		3,605	78 \	Vetlands/w	oods, HSG	GC (OFFSITE)				
		11,149	70 \	Noods, Go	od, HSG C					
*		5,924	78 \	Vetlands/w	oods, HSG	G C				
*		28,611	78 \	Vetlands/w	oods, HSG	6 A				
		3,016			od, HSG A					
*		1,504		Decks, HSC						
		14,631	74 >	<u>>75% Gras</u>	s cover, Go	bod, HSG C				
	1	93,654	64 \	Veighted A	verage					
	1	78,496	ç	92.17% Pei	vious Area	l				
		15,158	7	7.83% Impe	ervious Are	а				
	Тс	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	12.2	50	0.0190	0.07		Sheet Flow, START				
						Woods: Light underbrush n= 0.400 P2= 3.40"				
	1.5	116	0.0690	1.31		Shallow Concentrated Flow, B-C				
						Woodland Kv= 5.0 fps				
	0.1	20	0.0200	2.87		Shallow Concentrated Flow, C-D				
						Paved Kv= 20.3 fps				
	1.3	129	0.1100	1.66		Shallow Concentrated Flow, D-WETLAND				
						Woodland Kv= 5.0 fps				
	15.1	315	Total							

215-181 Post-DEV (R3) Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Subcatchment P2: P2


Summary for Subcatchment P3: SW Property

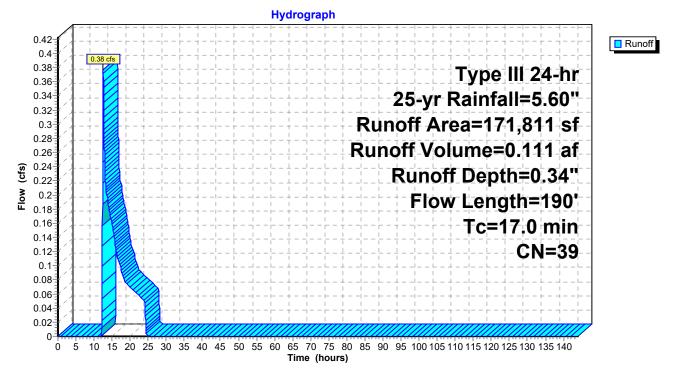
Runoff = 0.04 cfs @ 15.81 hrs, Volume= 0.028 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

_	А	rea (sf)	CN [Description							
	1	57,110	30 \	30 Woods, Good, HSG A							
*		94,725	30 \	Voods, Fai	r, HSG A (0	OFFSITE)					
*		4,710	98 I	mpervious,	, HSG A (Ò	FFSITE					
	2	56,545	31 \	Veighted A	verage						
	2	51,835	ę	98.16% Per	rvious Area						
		4,710		.84% Impe	ervious Area	а					
					_						
	Tc	Length	Slope		Capacity	Description					
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
-		•				Description Sheet Flow, Start Off Property					
_	(min)	(feet)	(ft/ft)	(ft/sec)							
_	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Start Off Property					
_	(min) 10.2	(feet) 50	(ft/ft) 0.0300	(ft/sec) 0.08		Sheet Flow, Start Off Property Woods: Light underbrush n= 0.400 P2= 3.40"					

Subcatchment P3: SW Property

Summary for Subcatchment P4: Central Overland

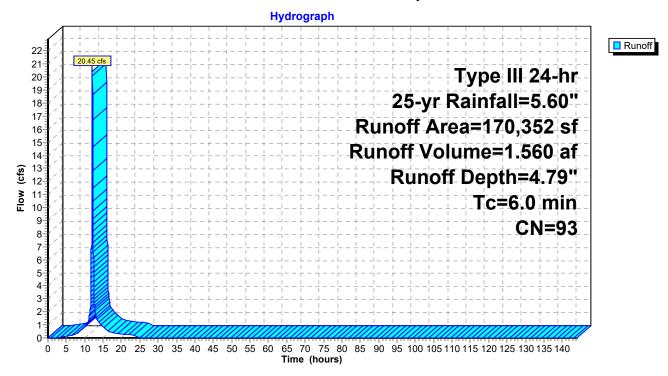

Runoff = 0.38 cfs @ 12.55 hrs, Volume= 0.111 af, Depth= 0.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

	A	rea (sf)	CN [Description						
	1	04,548	30 \	Voods, Go						
		41,769	39 >	>75% Gras	ood, HSG A					
		2,502	76 (Gravel road	ls, HSG A					
		21,686	74 >	>75% Gras	s cover, Go	bod, HSG C				
*		767	98 E	Decks, HS0	ЭC					
*		539	98 [Decks, HSC	GΑ					
	1	71,811	39 \	Veighted A	verage					
	1	70,505	ç	9.24% Pe	rvious Area	1				
		1,306	().76% Impe	ervious Are	a				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	15.8	50	0.0100	0.05		Sheet Flow, A-B				
						Woods: Light underbrush n= 0.400 P2= 3.40"				
	1.2	140	0.0150	1.97		Shallow Concentrated Flow, B-C				
						Unpaved Kv= 16.1 fps				
	47.0	400	T ()							

17.0 190 Total

Subcatchment P4: Central Overland

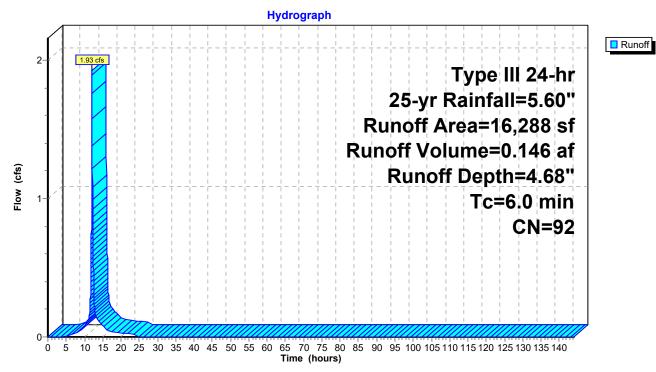

Summary for Subcatchment P4a: Developed Site

Runoff = 20.45 cfs @ 12.08 hrs, Volume= 1.560 af, Depth= 4.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

	Ar	ea (sf)	CN	Description			
	(32,445	98	Roofs, HSC	βA		
	3	36,095	74	>75% Gras	s cover, Go	od, HSG C	
	6	64,685	98	Roofs, HSC	ЭC		
*	3	35,350	98	Paved park	ing, HSG C		
*		1,777	98	Decks, HS0	GĊ		
	17	70,352	93	Weighted A	verage		
	3	36,095		21.19% Pe	rvious Area		
	13	34,257		78.81% Imp	pervious Ar	ea	
	Тс	Length	Slop		Capacity	Description	
(min)	(feet)	(ft/ft	:) (ft/sec)	(cfs)		
	6.0					Direct Entry,	

Subcatchment P4a: Developed Site

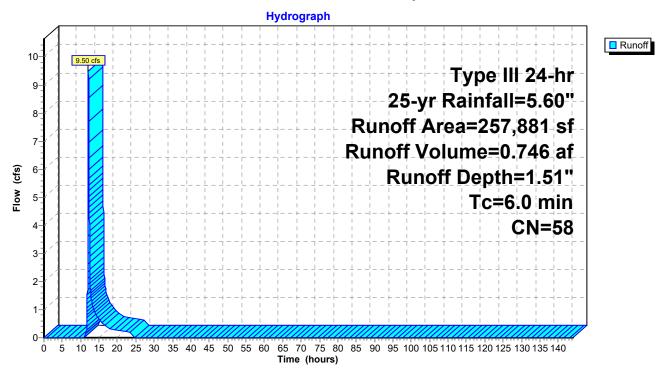

Summary for Subcatchment P4b: Developed Site

Runoff = 1.93 cfs @ 12.08 hrs, Volume= 0.146 af, Depth= 4.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

	Ar	ea (sf)	CN	Description				
		191	98	Roofs, HSG	βA			
		7,608	98	Roofs, HSG	ЭС			
*		3,536	98	Paved park	ing, HSG C	C		
		3,501	74	>75% Gras	s cover, Go	ood, HSG C		
		1,452	89	Gravel road	ls, HSG C			
		16,288	92	Weighted A	verage			
		4,953		30.41% Pervious Area				
		11,335		69.59% Impervious Area				
	Тс	Length	Slop	e Velocity	Capacity	Description		
(n	nin)	(feet)	(ft/́f		(cfs)			
	6.0					Direct Entry,		

Subcatchment P4b: Developed Site


Summary for Subcatchment P4c: Developed Site

Runoff = 9.50 cfs @ 12.10 hrs, Volume= 0.746 af, Depth= 1.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

	Area (sf)	CN	Description					
	72,562	39	>75% Grass cover, Good, HSG A					
	48,621	98	Paved parking, HSG A					
*	599	98	Walks, HSG Ă					
*	2,713	98	Decks, HSG A					
	10,062	74	>75% Grass cover, Good, HSG C					
*	13,564	98	Paved parking, HSG C					
*	491	98	Walks, HSG Č					
*	406	70	Woods, Good, HSG C (OFFSITE)					
*	33,887	30	Woods, Good, HSG A (OFFSITE)					
*	60,799	39	>75% Grass cover, Good, HSG Á (OFFSITE)					
*	3,744	98	Pavement, HSG A (OFFSITE)					
*	2,312	98	Paved parking, HSG A (OFFSITE)					
*	8,121	98	Impervious, HSG A (OFFSITE)					
	257,881	58	Weighted Average					
	177,716		68.91% Pervious Area					
80,165 31.09% Impervious Area			31.09% Impervious Area					
	Tc Length	Slop	be Velocity Capacity Description					
	(min) (feet)	(ft/	(ft/sec) (cfs)					
	6.0		Direct Entry,					

Subcatchment P4c: Developed Site

Summary for Subcatchment P5: Central Overland

Runoff = 0.37 cfs @ 12.46 hrs, Volume= 0.073 af, Depth= 0.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 25-yr Rainfall=5.60"

A	Area (sf)	CN [Description				
	30,577	30 \	Woods, Good, HSG A				
	25,063	39 >	75% Gras	s cover, Go	bod, HSG A		
	610	70 \	Woods, Good, HSG C				
	12,737	74 >	>75% Grass cover, Good, HSG C				
*	999	98 E	Decks, HSG C				
*	487	98 E	Decks, HSG A				
*	22	98 F	Pavement, HSG A (OFFSITE)				
*	356	39 >	•75% Gras	s cover, Go	bod, HSG A (OFFSITE)		
	70,851	43 \	Veighted A	verage			
	69,343	ç	97.87% Pei	vious Area	l de la constante d		
	1,508	2	2.13% Impe	ervious Are	а		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
15.8	50	0.0100	0.05		Sheet Flow, A-B		
					Woods: Light underbrush n= 0.400 P2= 3.40"		
1.2	140	0.0150	1.97		Shallow Concentrated Flow, B-C		
					Unpaved Kv= 16.1 fps		
17.0	190	Total					

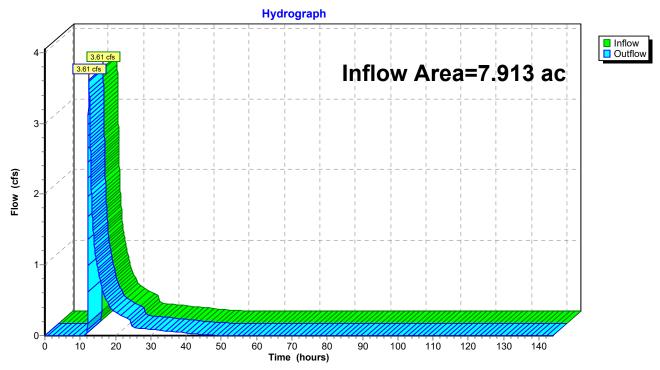
Hydrograph Runoff 0.4 0.38 0.37 cfs Type III 24-hr 0.36 0.34 25-yr Rainfall=5.60" 0.32 0.3 Runoff Area=70,851 sf 0.28 Runoff Volume=0.073 af 0.26 0.24 (S) 0.24 0.22 Runoff Depth=0.54" Flow (0.2 Flow Length=190' 0.18 0.16 Tc=17.0 min 0.14 **CN=43** 0.12 0.1 0.08 0.06 0.04 0.02 0-5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 Ó Time (hours)

Subcatchment P5: Central Overland

Summary for Reach DP-1: Wetland

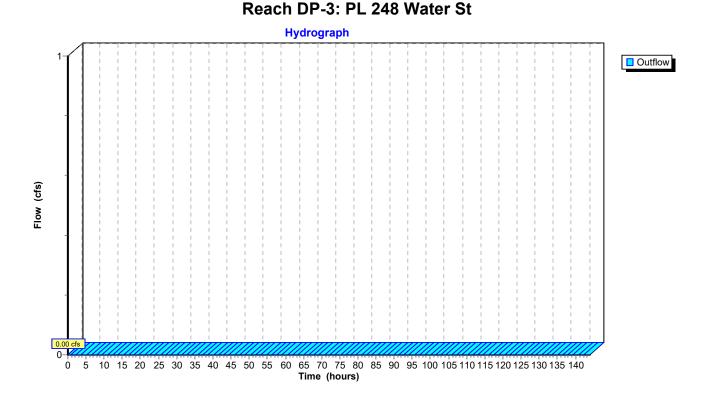
Inflow Area =	24.537 ac, 30.85% Impervious, Inflow	Depth = 1.48" for 25-yr event
Inflow =	15.56 cfs @ 12.57 hrs, Volume=	3.034 af
Outflow =	15.56 cfs @ 12.57 hrs, Volume=	3.034 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2

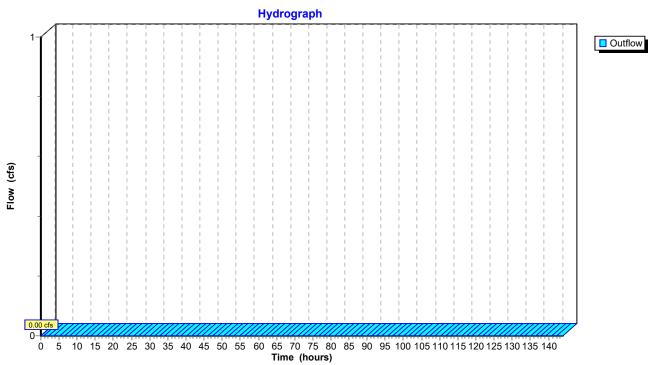

Hydrograph Inflow Outflow 15.56 cfs 17 Inflow Area=24.537 ac 5.56 cfs 16-15-14-13-12-11 10-Flow (cfs) 9-8 7-6-5-4-3-2 1 0-10 20 30 40 50 70 90 100 120 130 140 Ó 60 80 110 Time (hours)

Reach DP-1: Wetland

Summary for Reach DP-2: North PL


Inflow Area =	7.913 ac, 23.69% Impervious, Inflow D	Depth = 1.33" for 25-yr event
Inflow =	3.61 cfs @ 12.49 hrs, Volume=	0.879 af
Outflow =	3.61 cfs @ 12.49 hrs, Volume=	0.879 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2



Reach DP-2: North PL

Summary for Reach DP-3: PL 248 Water St

Summary for Reach DP-4: South PL

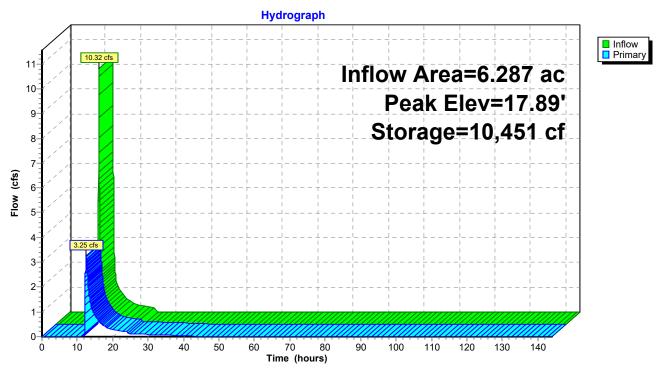
Reach DP-4: South PL

Summary for Pond 1P: Extended Dry Detention Basin

Inflow Area =	6.287 ac, 29.27% Impervious, Inflow D	Depth = 1.54" for 25-yr event
Inflow =	10.32 cfs @ 12.10 hrs, Volume=	0.807 af
Outflow =	3.25 cfs @ 12.49 hrs, Volume=	0.807 af, Atten= 69%, Lag= 23.5 min
Primary =	3.25 cfs @ 12.49 hrs, Volume=	0.807 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 17.89' @ 12.49 hrs Surf.Area= 5,365 sf Storage= 10,451 cf

Plug-Flow detention time= 207.2 min calculated for 0.806 af (100% of inflow) Center-of-Mass det. time= 207.8 min (1,079.7 - 871.9)


Volume	Inve	ert Avail.Sto	rage Storage	e Description	
#1	15.5	50' 17,9	59 cf Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(feet	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
15.5	0	3,413	0	0	
16.0	0	3,794	1,802	1,802	
17.0	0	4,596	4,195	5,997	
18.0	0	5,456	5,026	11,023	
18.1	0	6,539	600	11,623	
19.0	0	7,541	6,336	17,959	
Device	Routing	Invert	Outlet Device	es	
#1 #2 #3	Primary Device 1 Device 1		Inlet / Outlet n= 0.013 Co 2.0'' Vert. Or	P, projecting, no Invert= 15.50' / 1 rrugated PE, sm ifice/Grate C= .20' rise Sharp-	headwall, Ke= 0.900 5.23' S= 0.0100 '/' Cc= 0.900 ooth interior, Flow Area= 1.23 sf 0.600 Limited to weir flow at low heads Crested Rectangular Weir

Primary OutFlow Max=3.25 cfs @ 12.49 hrs HW=17.89' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 3.25 cfs of 6.20 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.16 cfs @ 7.32 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 3.09 cfs @ 3.50 fps)

Pond 1P: Extended Dry Detention Basin

Summary for Pond 2P: Infiltration Chambers

Inflow Area =	4.285 ac, 78.01% Impervious, Inflow De	epth = 4.78" for 25-yr event
Inflow =	22.38 cfs @ 12.08 hrs, Volume=	1.706 af
Outflow =	12.61 cfs @ 12.20 hrs, Volume=	1.706 af, Atten= 44%, Lag= 7.1 min
Discarded =	0.21 cfs @ 7.60 hrs, Volume=	0.844 af
Primary =	12.41 cfs @ 12.20 hrs, Volume=	0.862 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 21.74' @ 12.20 hrs Surf.Area= 8,736 sf Storage= 30,236 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 565.0 min (1,340.3 - 775.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.60'	11,916 cf	66.50'W x 131.37'L x 5.75'H Field A
			50,231 cf Overall - 20,441 cf Embedded = 29,790 cf x 40.0% Voids
#2A	17.35'	20,441 cf	Cultec R-902HD x 315 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			315 Chambers in 9 Rows
			Cap Storage= +2.8 cf x 2 x 9 rows = 49.7 cf
		32,357 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	16.00'	24.0" Round Culvert
	-		L= 26.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 16.00' / 15.74' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Device 1	18.40'	1.5" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	20.75'	4.0' long x 2.60' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)
#4	Discarded	16.60'	1.020 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.21 cfs @ 7.60 hrs HW=16.67' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=12.38 cfs @ 12.20 hrs HW=21.74' TW=0.00' (Dynamic Tailwater)

-2=Orifice/Grate (Orifice Controls 0.11 cfs @ 8.72 fps)

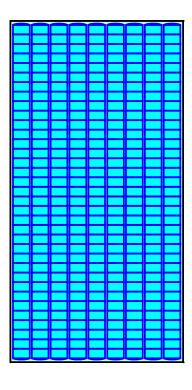
-3=Sharp-Crested Rectangular Weir (Weir Controls 12.27 cfs @ 3.26 fps)

Pond 2P: Infiltration Chambers - Chamber Wizard Field A

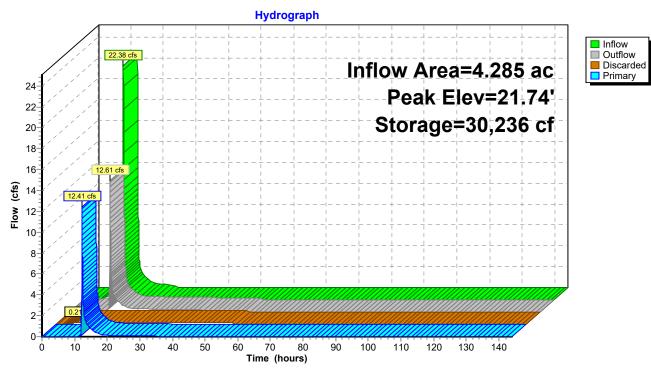
Chamber Model = Cultec R-902HD (Cultec Recharger®902HD)

Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap Cap Storage= +2.8 cf x 2 x 9 rows = 49.7 cf

78.0" Wide + 9.0" Spacing = 87.0" C-C Row Spacing


35 Chambers/Row x 3.67' Long +0.52' Cap Length x 2 = 129.37' Row Length +12.0" End Stone x 2 = 131.37' Base Length 9 Rows x 78.0" Wide + 9.0" Spacing x 8 + 12.0" Side Stone x 2 = 66.50' Base Width 9.0" Stone Base + 48.0" Chamber Height + 12.0" Stone Cover = 5.75' Field Height

315 Chambers x 64.7 cf + 2.8 cf Cap Volume x 2 x 9 Rows = 20,441.2 cf Chamber Storage


50,231.3 cf Field - 20,441.2 cf Chambers = 29,790.1 cf Stone x 40.0% Voids = 11,916.0 cf Stone Storage

Chamber Storage + Stone Storage = 32,357.3 cf = 0.743 af Overall Storage Efficiency = 64.4% Overall System Size = 131.37' x 66.50' x 5.75'

315 Chambers 1,860.4 cy Field 1,103.3 cy Stone

Pond 2P: Infiltration Chambers

Summary for Pond E-P1: Wetland

Inflow Area =	5.973 ac, 62.63% Impervious, Inflow	Depth = 3.42" for 25-yr event
Inflow =	13.24 cfs @ 12.44 hrs, Volume=	1.703 af
Outflow =	13.23 cfs @ 12.45 hrs, Volume=	1.535 af, Atten= 0%, Lag= 0.8 min
Primary =	13.23 cfs @ 12.45 hrs, Volume=	1.535 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 18.07' @ 12.45 hrs Surf.Area= 13,435 sf Storage= 8,260 cf

Plug-Flow detention time= 71.3 min calculated for 1.535 af (90% of inflow) Center-of-Mass det. time= 23.2 min (863.7 - 840.5)

Volume	I	nvert	Avail.Sto	orage	Storage	Description	
#1	1	7.00'	236,2	53 cf	Custom	n Stage Data (P	rismatic)Listed below (Recalc)
					<u>.</u>	0 0	
Elevatio			.Area		Store.	Cum.Store	
(fee	et)		(sq-ft)	(cubi	c-feet)	(cubic-feet)	
17.0	00		2,349		0	0	
18.0	00	1	2,281		7,315	7,315	
19.0	00	2	7,986		20,134	27,449	
20.0	00	3	7,607	3	32,797	60,245	
21.0	00	4	9,582	2	43,595	103,840	
22.0	00	6	6,971	Ę	58,277	162,116	
23.0	00	8	1,302	-	74,137	236,253	
Device	Routi	ng	Invert	Outl	et Device	S	
#1	Prima	iry	18.00'	Asy	mmetrica	al Weir, C= 3.27	7
		•		Offs	et (feet)	0.00 10.80 18.4	43 23.94 57.50 86.92 287.08 357.73
				427.	.57`483.9	5 528.04 555.9	94
				Elev	/. (feet) 2	23.00 22.00 21	.00 20.00 19.00 18.00 18.00 19.00
					• •	22.00 23.00	

Primary OutFlow Max=13.22 cfs @ 12.45 hrs HW=18.07' TW=13.33' (Dynamic Tailwater) **1=Asymmetrical Weir** (Weir Controls 13.22 cfs @ 0.87 fps)

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

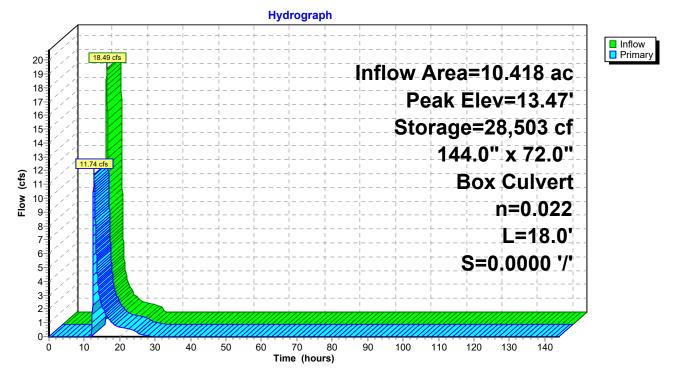
Pond E-P1: Wetland

Summary for Pond E-P2: Wetland

Inflow Area =	10.418 ac, 39.24% Impervious, Inflow I	Depth = 2.61" for 25-yr event
Inflow =	18.49 cfs @ 12.38 hrs, Volume=	2.270 af
Outflow =	11.74 cfs @ 12.71 hrs, Volume=	2.034 af, Atten= 37%, Lag= 19.7 min
Primary =	11.74 cfs @ 12.71 hrs, Volume=	2.034 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 13.47' @ 12.71 hrs Surf.Area= 32,735 sf Storage= 28,503 cf

Plug-Flow detention time= 120.6 min calculated for 2.033 af (90% of inflow) Center-of-Mass det. time= 71.5 min (935.7 - 864.2)


Volume	In	vert Av	ail.Stora	age Stora	age Description
#1	12	2.00'	47,617	7 cf Cust	tom Stage Data (Prismatic)Listed below (Recalc)
Elevatic (fee 12.0 13.0 14.0	et) 00 00	Surf.Area (sq-ft 1,820 27,16 39,073) (6 7	Inc.Store <u>cubic-feet)</u> 0 14,497 33,120) (cubic-feet)) 0 7 14,497
Device	Routin	g	Invert	Outlet Dev	vices
#1	Primar	У	12.83'	144.0" W	x 72.0" H Box Culvert
					Box, 0° wingwalls, square crown edge, Ke= 0.700
					let Invert= 12.83' / 12.83' S= 0.0000 '/' Cc= 0.900 Earth, clean & straight, Flow Area= 72.00 sf
				11 0.022	
Primary	OutElo	w May=11	73 cfs (ര 12 71 hr	rs HW=13.47' TW=0.00' (Dynamic Tailwater)

Primary OutFlow Max=11.73 cfs @ 12.71 hrs HW=13.47' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 11.73 cfs @ 2.04 fps)

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Pond E-P2: Wetland

215-181 Post-DEV (R3)	Type III 24-hr 100-yr Rainfall=7.00"		
Prepared by McKenzie Engineering Group, Inc.	Printed 6/7/2021		
HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solution	s LLC Page 91		
Time span=0.00-144.00 hrs, dt=0.02 hrs, Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routi	S, Weighted-CN		
SubcatchmentP-4d: Overland to Wet Basin Runoff Area=15,966 sf 0.00% Impervious Runoff Depth=3.00" Tc=6.0 min CN=64 Runoff=1.27 cfs 0.092 af			

SubcatchmentP1: Property offsite	Runoff Area=260,170 sf 62.63% Impervious Runoff Depth=4.69" Flow Length=343' Tc=31.4 min CN=80 Runoff=18.06 cfs 2.337 af
SubcatchmentP2: P2	Runoff Area=193,654 sf 7.83% Impervious Runoff Depth=3.00" Flow Length=315' Tc=15.1 min CN=64 Runoff=11.60 cfs 1.112 af
SubcatchmentP3: SW Property	Runoff Area=256,545 sf 1.84% Impervious Runoff Depth=0.26" Flow Length=683' Tc=13.5 min CN=31 Runoff=0.22 cfs 0.128 af
SubcatchmentP4: Central Overland	Runoff Area=171,811 sf 0.76% Impervious Runoff Depth=0.77" Flow Length=190' Tc=17.0 min CN=39 Runoff=1.40 cfs 0.253 af
SubcatchmentP4a: Developed Site	Runoff Area=170,352 sf 78.81% Impervious Runoff Depth=6.17" Tc=6.0 min CN=93 Runoff=25.98 cfs 2.011 af
SubcatchmentP4b: Developed Site	Runoff Area=16,288 sf 69.59% Impervious Runoff Depth=6.05" Tc=6.0 min CN=92 Runoff=2.46 cfs 0.189 af
SubcatchmentP4c: Developed Site	Runoff Area=257,881 sf 31.09% Impervious Runoff Depth=2.41" Tc=6.0 min CN=58 Runoff=15.99 cfs 1.189 af
SubcatchmentP5: Central Overland	Runoff Area=70,851 sf 2.13% Impervious Runoff Depth=1.07" Flow Length=190' Tc=17.0 min CN=43 Runoff=1.01 cfs 0.146 af
Reach DP-1: Wetland	Inflow=27.67 cfs 4.757 af Outflow=27.67 cfs 4.757 af
Reach DP-2: North PL	Inflow=6.77 cfs 1.425 af Outflow=6.77 cfs 1.425 af
Reach DP-3: PL 248 Water St	Outflow=0.00 cfs 0.000 af
Reach DP-4: South PL	Outflow=0.00 cfs 0.000 af
Pond 1P: Extended Dry Detention Basin	Peak Elev=18.79' Storage=16,382 cf Inflow=17.26 cfs 1.280 af Outflow=5.82 cfs 1.280 af
Pond 2P: Infiltration Chambers Discarded=0.21 cfs	Peak Elev=22.34' Storage=32,333 cf Inflow=28.44 cfs 2.200 af s 0.869 af Primary=24.32 cfs 1.331 af Outflow=24.53 cfs 2.200 af

Pond E-P1: Wetland

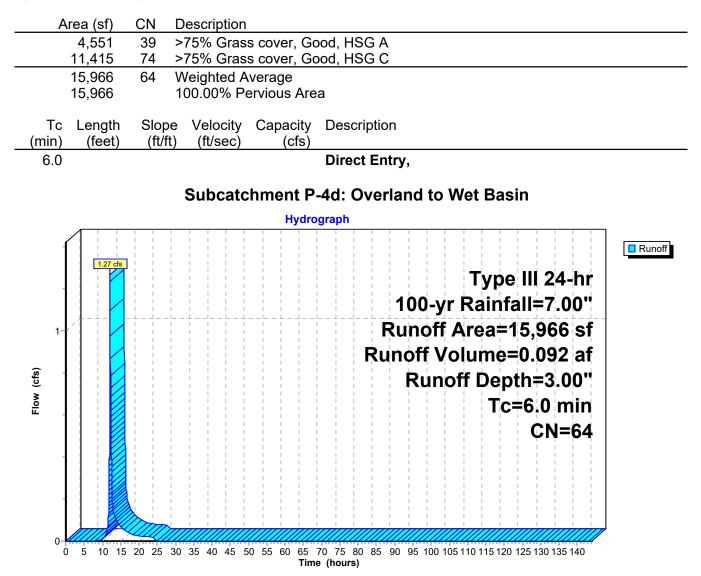
Peak Elev=18.09' Storage=8,487 cf Inflow=18.06 cfs 2.337 af Outflow=18.05 cfs 2.169 af

215-181 Post-DEV (R3) Prepared by McKenzie Engineering Group, Inc.

HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Pond E-P2: Wetland

Peak Elev=13.70' Storage=36,316 cf Inflow=26.16 cfs 3.281 af 144.0" x 72.0" Box Culvert n=0.022 L=18.0' S=0.0000 '/' Outflow=19.56 cfs 3.044 af

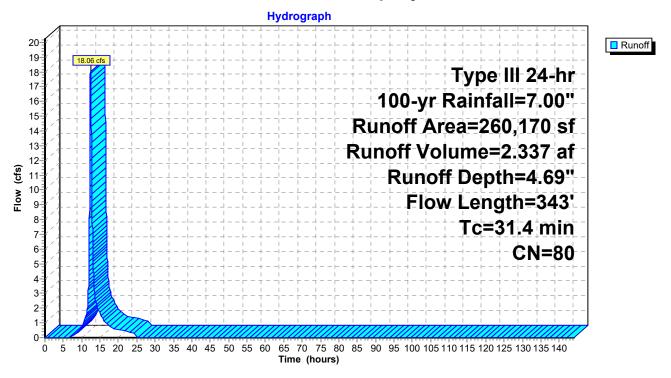

Total Runoff Area = 32.450 ac Runoff Volume = 7.455 af Average Runoff Depth = 2.76" 70.90% Pervious = 23.006 ac 29.10% Impervious = 9.444 ac

Summary for Subcatchment P-4d: Overland to Wet Basin

Page 93

Runoff 1.27 cfs @ 12.09 hrs, Volume= 0.092 af, Depth= 3.00" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"


Summary for Subcatchment P1: Property offsite

Runoff = 18.06 cfs @ 12.43 hrs, Volume= 2.337 af, Depth= 4.69"

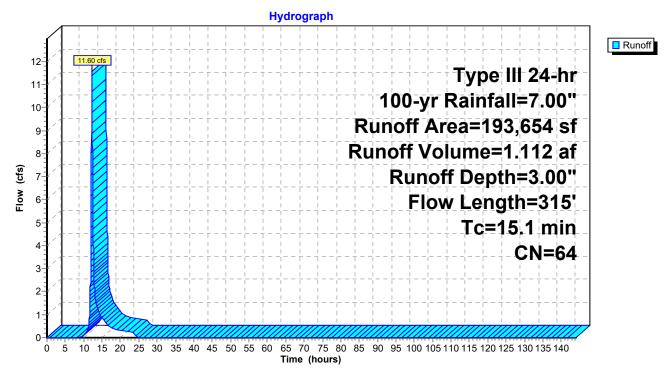
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

	Α	rea (sf)	CN D	escription				
*	1	42,754	89 L	Urban commercial, 85% imp, HSG A (OFFSITE)				
*		31,587	30 V	Voods, Go	od, HSG A	(OFFSITE)		
*		48,943	94 L	Irban comr	mercial, 85 ^o	% imp, HSG C (OFFSITE)		
*		8,690	78 V	Vetlands/w	oods, HSG	GA (OFFSITE)		
*		25,996	70 V	Voods, Go	od, HSG C	(OFFSITE)		
*		2,200	78 V	Vetlands/w	oods, HSG	GC (OFFSITE)		
	2	60,170	80 V	Veighted A	verage			
		97,228	3	7.37% Per	vious Area			
	1	62,942	6	2.63% Imp	pervious Ar	ea		
	-				• ••			
	ŢĊ	Length	Slope	Velocity	Capacity	Description		
			15.15.	1011	· / • ·	•		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	22.8	(feet) 50	(ft/ft) 0.0040	(ft/sec) 0.04	(cfs)	Sheet Flow, Start		
	22.8			0.04	(cfs)	Woods: Light underbrush n= 0.400 P2= 3.40"		
					(cfs)	Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C		
	22.8 6.6	50	0.0040 0.0040	0.04	(cfs)	Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps		
	22.8	50	0.0040	0.04	(cfs)	Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND		
	22.8 6.6	50 126	0.0040 0.0040	0.04 0.32	(cfs)	Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps		
	22.8 6.6	50 126	0.0040 0.0040	0.04 0.32	(cfs)	Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-WETLAND		

Subcatchment P1: Property offsite

Summary for Subcatchment P2: P2

Runoff = 11.60 cfs @ 12.21 hrs, Volume= 1.112 af, Depth= 3.00"

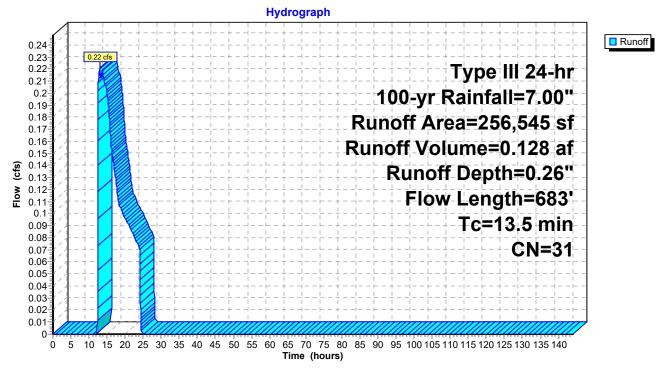

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

	A	rea (sf)	CN [Description				
*		9,050	98 F	Paved parking, HSG A (OFFSITE)				
*		49,865				(OFFSITE)		
*		20,149	78 \	Vetlands/w	oods. HSG	GĂ (OFFSITE)		
*		4,604	98 F	Paved park	ing, HSG C	C (OFFSITE)		
*		41,546	70 \	Voods, Go	od, HSG C	(OFFSITE)		
*		3,605	78 \	Vetlands/w	oods, HSG	GC (OFFSITE)		
		11,149	70 \	Noods, Go	od, HSG C			
*		5,924	78 \	Vetlands/w	oods, HSG	G C		
*		28,611	78 \	Vetlands/w	oods, HSG	6 A		
		3,016			od, HSG A			
*		1,504		Decks, HSC				
		14,631	74 >	<u>>75% Gras</u>	s cover, Go	bod, HSG C		
	1	93,654	64 \	Veighted A	verage			
	1	78,496	ę	92.17% Pei	vious Area	l		
		15,158	7	7.83% Impe	ervious Are	а		
	Тс	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	12.2	50	0.0190	0.07		Sheet Flow, START		
						Woods: Light underbrush n= 0.400 P2= 3.40"		
	1.5	116	0.0690	1.31		Shallow Concentrated Flow, B-C		
						Woodland Kv= 5.0 fps		
	0.1	20	0.0200	2.87		Shallow Concentrated Flow, C-D		
						Paved Kv= 20.3 fps		
	1.3	129	0.1100	1.66		Shallow Concentrated Flow, D-WETLAND		
						Woodland Kv= 5.0 fps		
	15.1	315	Total					

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Subcatchment P2: P2


Summary for Subcatchment P3: SW Property

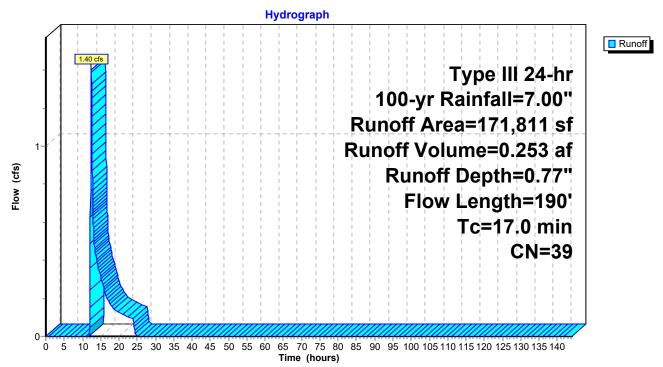
Runoff = 0.22 cfs @ 12.95 hrs, Volume= 0.128 af, Depth= 0.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

_	A	rea (sf)	CN E	Description		
	1	57,110	30 V	Voods, Go	od, HSG A	
*		94,725	30 V	Voods, Fai	r, HSG A (0	OFFSITE)
*		4,710	98 I	mpervious,	HSG A (Ò	FFSITE
	2	56,545	31 V	Veighted A	verage	
	2	51,835	ç	8.16% Pei	vious Area	
		4,710	1	.84% Impe	ervious Area	а
	Tc	Length	Slope	Velocity	Capacity	Description
	10	Longui	Siohe	voloolity	- 1 /	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
_		•		,		Sheet Flow, Start Off Property
_	(min)	(feet)	(ft/ft)	(ft/sec)		
_	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Start Off Property
_	(min) 10.2	(feet) 50	(ft/ft) 0.0300	(ft/sec) 0.08		Sheet Flow, Start Off Property Woods: Light underbrush n= 0.400 P2= 3.40"

Subcatchment P3: SW Property

Summary for Subcatchment P4: Central Overland

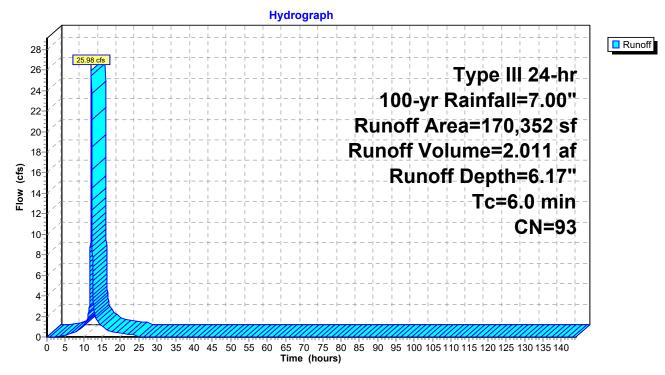

Runoff = 1.40 cfs @ 12.42 hrs, Volume= 0.253 af, Depth= 0.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

	A	rea (sf)	CN I	Description					
	1	04,548	30	Woods, Good, HSG A					
		41,769	39 :	>75% Gras	s cover, Go	bod, HSG A			
		2,502	76	Gravel road	ls, HSG A				
		21,686	74 :	>75% Gras	s cover, Go	bod, HSG C			
*		767	98	Decks, HSC	ЭC				
*		539	98	Decks, HSC	ĞΑ				
	1	71,811	39	Neighted A	verage				
	1	70,505	9	99.24% Pei	vious Area	l			
		1,306	().76% Impe	ervious Are	а			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	15.8	50	0.0100	0.05		Sheet Flow, A-B			
						Woods: Light underbrush n= 0.400 P2= 3.40"			
	1.2	140	0.0150	1.97		Shallow Concentrated Flow, B-C			
						Unpaved Kv= 16.1 fps			
	4 - 0	100							

17.0 190 Total

Subcatchment P4: Central Overland

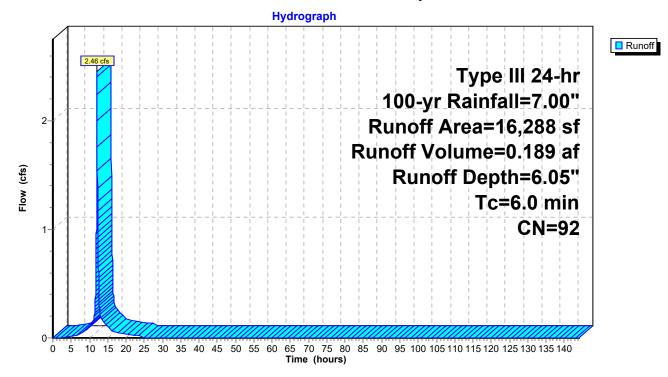

Summary for Subcatchment P4a: Developed Site

Runoff = 25.98 cfs @ 12.08 hrs, Volume= 2.011 af, Depth= 6.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

	Ar	rea (sf)	CN	Description			
	;	32,445	98	Roofs, HSG	βA		
	;	36,095	74	>75% Gras	s cover, Go	ood, HSG C	
		64,685	98	Roofs, HSC	ЭС		
*	;	35,350	98	Paved park	ing, HSG C		
*		1,777	98	Decks, HSC	ΞČ		
	1	70,352	93	Weighted A	verage		
	;	36,095		21.19% Per	vious Area		
	1	34,257		78.81% Imp	pervious Ar	ea	
	_				_		
		Length	Slop		Capacity	Description	
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	6.0					Direct Entry,	

Subcatchment P4a: Developed Site

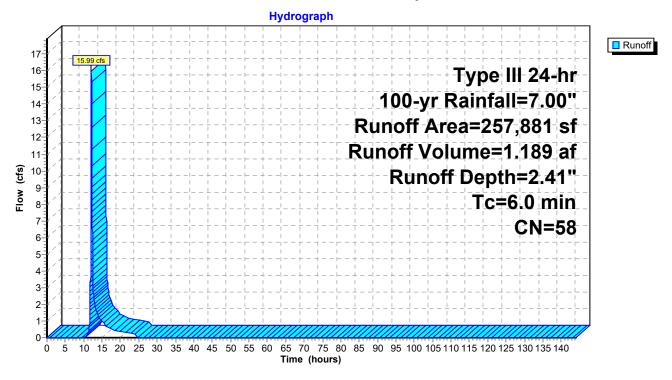

Summary for Subcatchment P4b: Developed Site

Runoff = 2.46 cfs @ 12.08 hrs, Volume= 0.189 af, Depth= 6.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

	Ar	rea (sf)	CN	Description			
		191	98	Roofs, HSC	βA		
		7,608	98	Roofs, HSC	ЭC		
*		3,536	98	Paved park	ing, HSG C)	
		3,501	74	>75% Gras	s cover, Go	ood, HSG C	
		1,452	89	Gravel road	ls, HSG C		
		16,288	92	Weighted A	verage		
		4,953		30.41% Pe	rvious Area		
		11,335		69.59% Imp	pervious Ar	ea	
	_		~.		a		
	Tc	Length	Slop	,	Capacity	Description	
(n	nin)	(feet)	(ft/f	t) (ft/sec)	(cfs)		
	6.0					Direct Entry,	

Subcatchment P4b: Developed Site

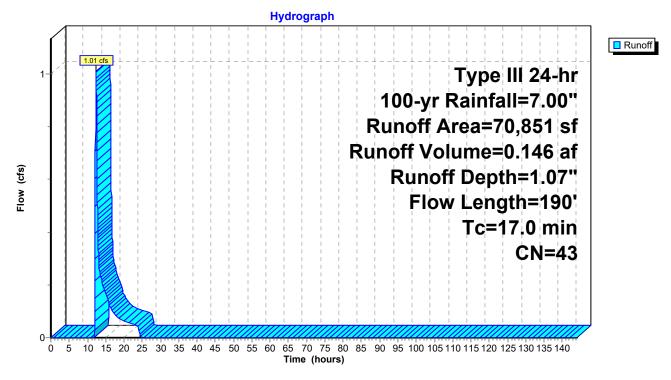

Summary for Subcatchment P4c: Developed Site

Runoff = 15.99 cfs @ 12.10 hrs, Volume= 1.189 af, Depth= 2.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

	Area (sf)	CN	Description				
	72,562	39	>75% Grass cover, Good, HSG A				
	48,621	98	Paved parking, HSG A				
*	599	98	Walks, HSG Å				
*	2,713	98	Decks, HSG A				
	10,062	74	>75% Grass cover, Good, HSG C				
*	13,564	98	Paved parking, HSG C				
*	491	98	Walks, HSG C				
*	406	70	Woods, Good, HSG C (OFFSITE)				
*	33,887	30	Woods, Good, HSG A (OFFSITE)				
*	60,799	39	>75% Grass cover, Good, HSG A (OFFSITE)				
*	3,744	98	Pavement, HSG A (OFFSITE)				
*	2,312	98	Paved parking, HSG A (OFFSITE)				
*	8,121	98	Impervious, HSG A (OFFSITE)				
	257,881	58	Weighted Average				
	177,716		68.91% Pervious Area				
	80,165		31.09% Impervious Area				
	Tc Length	Slop	be Velocity Capacity Description				
(n	nin) (feet)	(ft/	t) (ft/sec) (cfs)				
	6.0		Direct Entry,				
			-				

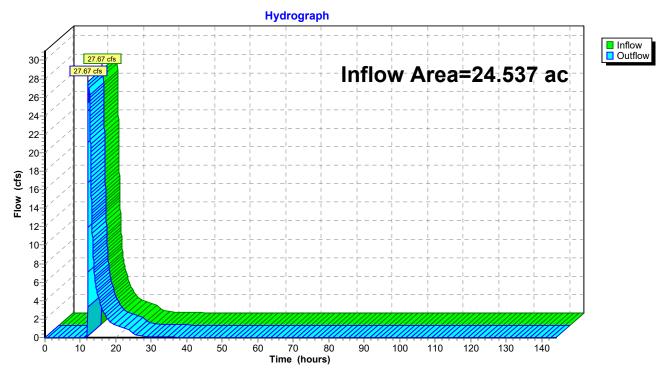
Subcatchment P4c: Developed Site


Summary for Subcatchment P5: Central Overland

Runoff = 1.01 cfs @ 12.32 hrs, Volume= 0.146 af, Depth= 1.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=7.00"

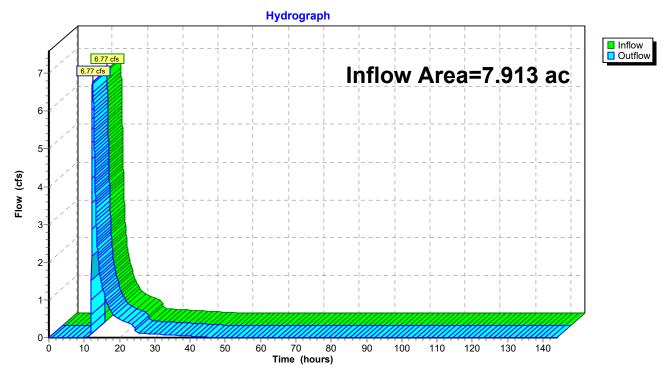
A	vrea (sf)	CN I	Description				
	30,577	30 \	Woods, Good, HSG A				
	25,063	39 >	>75% Gras	s cover, Go	bod, HSG A		
	610	70 \	Noods, Go	od, HSG C			
	12,737	74 >	>75% Gras	s cover, Go	bod, HSG C		
*	999	98 I	Decks, HSC	ЭC			
*	487	98 I	Decks, HSC	Ξ A			
*	22	98 I	Pavement,	HSG A (OF	FSITE)		
*	356	39 >	>75% Gras	s cover, Go	ood, HSG A (OFFSITE)		
	70,851	43 \	Neighted A	verage			
	69,343	ę	97.87% Pei	vious Area			
	1,508		2.13% Impe	ervious Area	a		
			-				
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
15.8	50	0.0100	0.05		Sheet Flow, A-B		
					Woods: Light underbrush n= 0.400 P2= 3.40"		
1.2	140	0.0150	1.97		Shallow Concentrated Flow, B-C		
					Unpaved Kv= 16.1 fps		
17.0	190	Total			· · ·		
-							


Subcatchment P5: Central Overland

Summary for Reach DP-1: Wetland

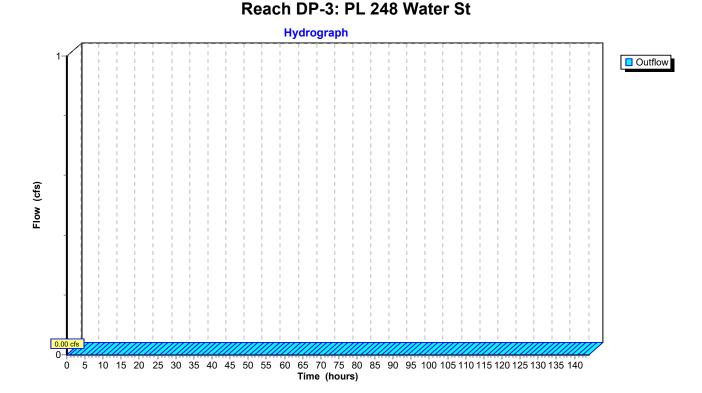
Inflow Area	a =	24.537 ac, 30.85% Impervious, Inflow Depth = 2.33" for 100-yr event
Inflow	=	27.67 cfs @ 12.15 hrs, Volume= 4.757 af
Outflow	=	27.67 cfs @ 12.15 hrs, Volume= 4.757 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2

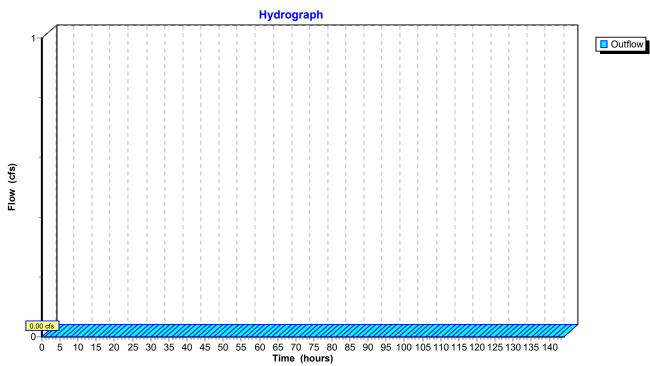


Reach DP-1: Wetland

Summary for Reach DP-2: North PL


Inflow Area =	7.913 ac, 23.69% Impervious, Inflow Depth = 2.16" for 100-yr event
Inflow =	6.77 cfs @ 12.41 hrs, Volume= 1.425 af
Outflow =	6.77 cfs @ 12.41 hrs, Volume= 1.425 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2



Reach DP-2: North PL

Summary for Reach DP-3: PL 248 Water St

Summary for Reach DP-4: South PL

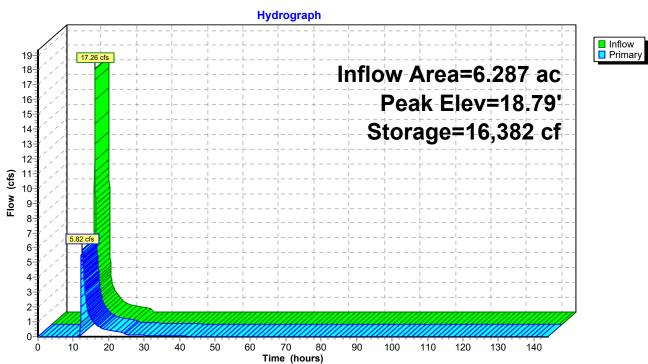
Reach DP-4: South PL

Summary for Pond 1P: Extended Dry Detention Basin

Inflow Area =	6.287 ac, 29.27% Impervious, Inflow	Depth = 2.44" for 100-yr event
Inflow =	17.26 cfs @ 12.10 hrs, Volume=	1.280 af
Outflow =	5.82 cfs @ 12.45 hrs, Volume=	1.280 af, Atten= 66%, Lag= 21.1 min
Primary =	5.82 cfs @ 12.45 hrs, Volume=	1.280 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 18.79' @ 12.45 hrs Surf.Area= 7,305 sf Storage= 16,382 cf

Plug-Flow detention time= 144.8 min calculated for 1.280 af (100% of inflow) Center-of-Mass det. time= 145.4 min (1,002.8 - 857.4)


Volume	Inve	ert Avail.Sto	rage Storage	e Description	
#1	15.5	50' 17,9	59 cf Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(feet	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
15.5	0	3,413	0	0	
16.0	0	3,794	1,802	1,802	
17.0	0	4,596	4,195	5,997	
18.0	0	5,456	5,026	11,023	
18.1	0	6,539	600	11,623	
19.0	0	7,541	6,336	17,959	
Device	Routing	Invert	Outlet Device	es	
#1 #2 #3	Primary Device 1 Device 1		Inlet / Outlet n= 0.013 Co 2.0'' Vert. Or	P, projecting, no Invert= 15.50' / 1 rrugated PE, sm ifice/Grate C= .20' rise Sharp-	headwall, Ke= 0.900 5.23' S= 0.0100 '/' Cc= 0.900 ooth interior, Flow Area= 1.23 sf 0.600 Limited to weir flow at low heads Crested Rectangular Weir

Primary OutFlow Max=5.82 cfs @ 12.45 hrs HW=18.79' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 5.82 cfs of 7.61 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.19 cfs @ 8.62 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 5.63 cfs @ 4.67 fps)

Pond 1P: Extended Dry Detention Basin

Summary for Pond 2P: Infiltration Chambers

Inflow Area =	4.285 ac, 78.01% Impervious, Inflow De	pth = 6.16" for 100-yr event
Inflow =	28.44 cfs @ 12.08 hrs, Volume=	2.200 af
Outflow =	24.53 cfs @ 12.13 hrs, Volume=	2.200 af, Atten= 14%, Lag= 2.9 min
Discarded =	0.21 cfs @ 6.64 hrs, Volume=	0.869 af
Primary =	24.32 cfs @ 12.13 hrs, Volume=	1.331 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 22.34' @ 12.13 hrs Surf.Area= 8,736 sf Storage= 32,333 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 455.5 min (1,224.6 - 769.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.60'	11,916 cf	66.50'W x 131.37'L x 5.75'H Field A
			50,231 cf Overall - 20,441 cf Embedded = 29,790 cf x 40.0% Voids
#2A	17.35'	20,441 cf	Cultec R-902HD x 315 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			315 Chambers in 9 Rows
			Cap Storage= +2.8 cf x 2 x 9 rows = 49.7 cf
		32,357 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	16.00'	24.0" Round Culvert
	-		L= 26.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 16.00' / 15.74' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Device 1	18.40'	1.5" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	20.75'	4.0' long x 2.60' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)
#4	Discarded	16.60'	1.020 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.21 cfs @ 6.64 hrs HW=16.67' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=24.19 cfs @ 12.13 hrs HW=22.34' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Passes 24.19 cfs of 27.59 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.12 cfs @ 9.48 fps)

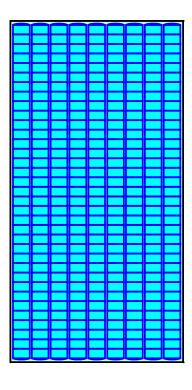
-3=Sharp-Crested Rectangular Weir (Weir Controls 24.08 cfs @ 4.12 fps)

Pond 2P: Infiltration Chambers - Chamber Wizard Field A

Chamber Model = Cultec R-902HD (Cultec Recharger®902HD)

Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap Cap Storage= +2.8 cf x 2 x 9 rows = 49.7 cf

78.0" Wide + 9.0" Spacing = 87.0" C-C Row Spacing


35 Chambers/Row x 3.67' Long +0.52' Cap Length x 2 = 129.37' Row Length +12.0" End Stone x 2 = 131.37' Base Length 9 Rows x 78.0" Wide + 9.0" Spacing x 8 + 12.0" Side Stone x 2 = 66.50' Base Width 9.0" Stone Base + 48.0" Chamber Height + 12.0" Stone Cover = 5.75' Field Height

315 Chambers x 64.7 cf + 2.8 cf Cap Volume x 2 x 9 Rows = 20,441.2 cf Chamber Storage

50,231.3 cf Field - 20,441.2 cf Chambers = 29,790.1 cf Stone x 40.0% Voids = 11,916.0 cf Stone Storage

Chamber Storage + Stone Storage = 32,357.3 cf = 0.743 af Overall Storage Efficiency = 64.4% Overall System Size = 131.37' x 66.50' x 5.75'

315 Chambers 1,860.4 cy Field 1,103.3 cy Stone

Hydrograph InflowOutflow 28.44 cfs Discarded Primary Inflow Area=4.285 ac 30 Peak Elev=22.34' 28 Storage=32,333 cf 26-24.32 24 22-20 Flow (cfs) 18-16-14-12-10 8-6-4 2 0-10 20 30 40 50 70 80 90 100 110 120 130 140 Ó 60

Time (hours)

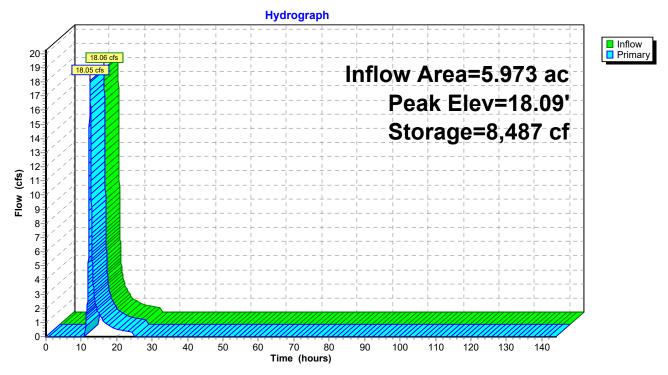
Pond 2P: Infiltration Chambers

Summary for Pond E-P1: Wetland

Inflow Area =	5.973 ac, 62.63% Impervious,	Inflow Depth = 4.69" for 100-yr event
Inflow =	18.06 cfs @ 12.43 hrs, Volume=	= 2.337 af
Outflow =	18.05 cfs @ 12.44 hrs, Volume=	= 2.169 af, Atten= 0%, Lag= 0.8 min
Primary =	18.05 cfs @ 12.44 hrs, Volume=	= 2.169 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 18.09' @ 12.44 hrs Surf.Area= 13,697 sf Storage= 8,487 cf

Plug-Flow detention time= 57.5 min calculated for 2.168 af (93% of inflow) Center-of-Mass det. time= 19.9 min (851.5 - 831.5)


Volume		Invert	Avail.Sto	rage	Storage	Description	
#1	1	17.00'	236,2	53 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	on	Su	f.Area	Inc	.Store	Cum.Store	
(fee		04	(sq-ft)		c-feet)	(cubic-feet)	
17.0	00		2,349		0	0	
18.0	00		12,281		7,315	7,315	
19.0			27,986		20,134	27,449	
20.0	00		37,607	3	32,797	60,245	
21.0	00	4	49,582	4	3,595	103,840	
22.0	00	(6,971	5	58,277	162,116	
23.0	00	8	31,302	7	4,137	236,253	
Device	Routi	ng	Invert	Outle	et Device	S	
#1	Prima	ary	18.00'	Asy	mmetrica	al Weir, C= 3.27	,
				Offse	et (feet)	0.00 10.80 18.4	43 23.94 57.50 86.92 287.08 357.73
				427.	57 483.9	5 528.04 555.9	94
				Elev	. (feet) 2	23.00 22.00 21	.00 20.00 19.00 18.00 18.00 19.00
				20.0	0 21.00	22.00 23.00	

Primary OutFlow Max=18.05 cfs @ 12.44 hrs HW=18.09' TW=13.62' (Dynamic Tailwater) **1=Asymmetrical Weir** (Weir Controls 18.05 cfs @ 0.96 fps)

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

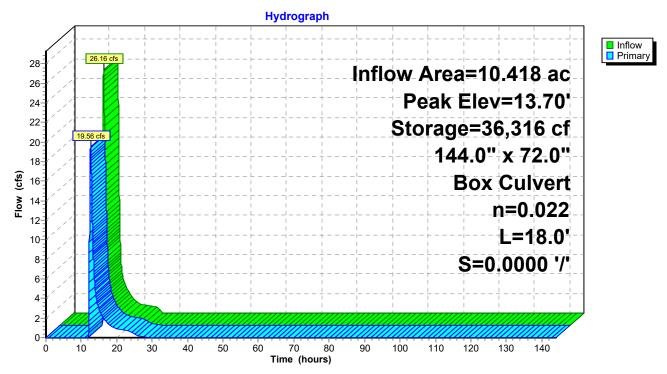
Pond E-P1: Wetland

Summary for Pond E-P2: Wetland

Inflow Area =	10.418 ac, 39.24% Impervious, Inflow	Depth = 3.78" for 100-yr event
Inflow =	26.16 cfs @ 12.36 hrs, Volume=	3.281 af
Outflow =	19.56 cfs @ 12.62 hrs, Volume=	3.044 af, Atten= 25%, Lag= 15.8 min
Primary =	19.56 cfs @ 12.62 hrs, Volume=	3.044 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 13.70' @ 12.62 hrs Surf.Area= 35,463 sf Storage= 36,316 cf

Plug-Flow detention time= 93.3 min calculated for 3.044 af (93% of inflow) Center-of-Mass det. time= 57.0 min (908.8 - 851.9)


Volume	In	vert Av	/ail.Sto	rage	Storage	Description	
#1	12	.00'	47,61	17 cf	Custom	Stage Data (Pr	ismatic)Listed below (Recalc)
Elevatio (fee 12.0	et) 00	Surf.Are (sq-f 1,82	t) 6	(cubi	c.Store <u>c-feet)</u> 0	Cum.Store (cubic-feet) 0	
13.0 14.0		27,16 39,07			14,497 33,120	14,497 47,617	
Device	Routin	,	Invert		et Device	,	
#1Primary12.83'144.0" W x 72.0" H Box Culvert L= 18.0' Box, 0° wingwalls, square crown edge, Ke= 0.700 Inlet / Outlet Invert= 12.83' / 12.83' S= 0.0000 '/' Cc= 0.900 n= 0.022 Earth, clean & straight, Flow Area= 72.00 sf							
Primary OutElow Max-10.56 efc @ 12.62 bre HW-13.70' TW-0.00' (Dynamic Tailwater)							

Primary OutFlow Max=19.56 cfs @ 12.62 hrs HW=13.70' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 19.56 cfs @ 2.51 fps)

215-181 Post-DEV (R3)

Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Pond E-P2: Wetland

APPENDIX C

Checklist for Stormwater Report

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

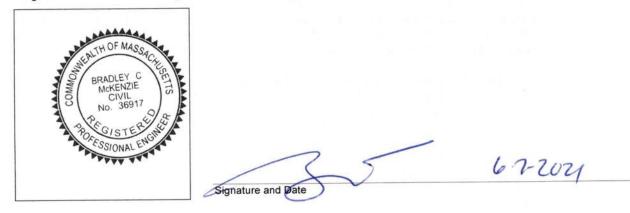
¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

No disturbance to any Wetland Resource Areas
Site Design Practices (e.g. clustered development, reduced frontage setbacks)
Reduced Impervious Area (Redevelopment Only)
Minimizing disturbance to existing trees and shrubs
LID Site Design Credit Requested:
Credit 1
Credit 2
Credit 3
Use of "country drainage" versus curb and gutter conveyance and pipe
Bioretention Cells (includes Rain Gardens)
Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
Treebox Filter
Water Quality Swale
Grass Channel
Green Roof
Other (describe):

Standard 1: No New Untreated Discharges

No new untreated discharges

- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.	\boxtimes	Soil	Anal	ysis	provided.
-------------------------	-------------	------	------	------	-----------

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

🖂 Static	Simple Dynamic
----------	----------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

\boxtimes	Recharge BMPs	have been sized	to infiltrate the	Required	Recharge V	olume.
-------------	---------------	-----------------	-------------------	----------	------------	--------

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - $\hfill\square$ Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- ☐ Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Standard 4: Water Quality (continued)

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands ProgramChecklist for Stormwater Report

\boxtimes	The BMP is sized (and calculations provided) based on:
	☐ The ½" or 1" Water Quality Volume or
	The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	andard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior to the discharge of stormwater to the post-construction stormwater BMPs.
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Sta	andard 6: Critical Areas
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
	Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited	d Project
---------	-----------

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

APPENDIX D

Illicit Discharge Compliance Statement Supplemental BMP Calculations

Illicit Discharge Compliance Statement

I, <u>Bradley C. Mckenzie, P.E.</u>, hereby notify the Pembroke Conservation Commission that I have not witnessed, nor am aware of any existing illicit discharges at the site known as Assessor's Map E-17, Lot 0 & E-17A, Lot 274 Water Street in Pembroke, Massachusetts. I also hereby certify that the development of said property as illustrated on the final plans entitled "River Marsh Village Comprehensive Permit Plan (Assessor's Map E-17, Lot 0 & E-17A, Lot 274) Water Street, Pembroke, Mass," prepared by McKenzie Engineering Group. Inc. dated September 22, 2016 and as revised and approved by the Pembroke Conservation Commission and maintenance thereof in accordance with the "Construction Phase Operations and Maintenance Plan" and "Long-Term Operations and Maintenance Plan" prepared by McKenzie Engineering Group, Inc. dated April 5, 2021 and as revised and approved by the Pembroke Conservation Commission will not create any new illicit discharges. There is no warranty implied regarding future illicit discharges that may occur as a result of improper construction or maintenance of the stormwater management system or unforeseen accidents.

Name:	Bradley Mckenzie, P.E.
Company:	McKenzie Engineering Group, Inc.
Title:	President
Signature:	
Date:	67-2021

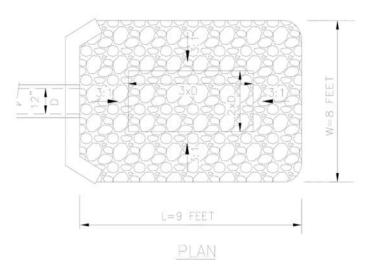
RIVER MARSH VILLAGE PEMBROKE, MA

> 4/5/2021 REVISED 6/7/21

STANDARD 1 - OUTLET PTOTECTION

Outlet From P-1 TO DP-2

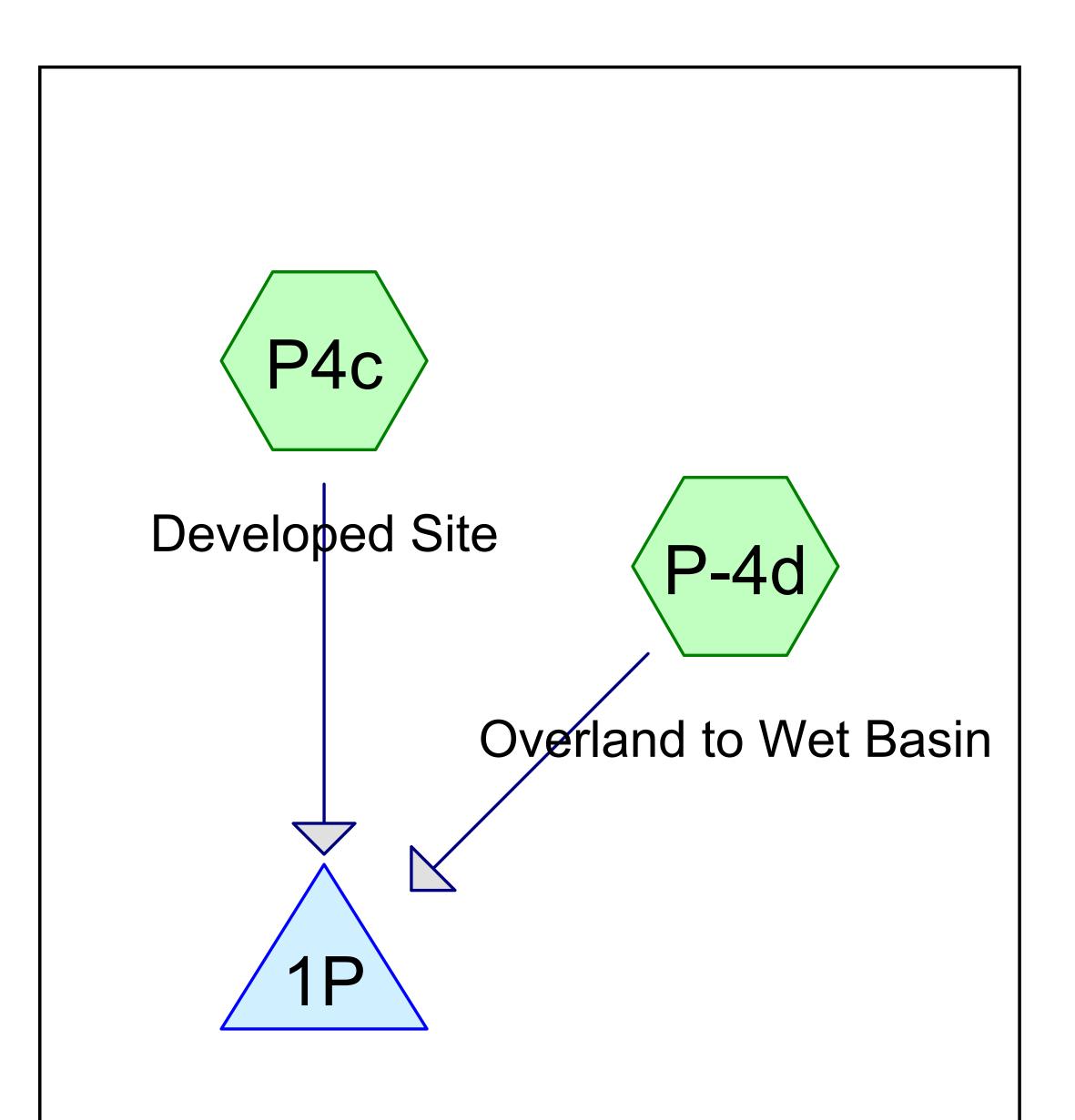
Outlet Pipe (inches) =	12
Q50 (cfs) =	4.42
TW = 0 (Assume 0.2')	0.2

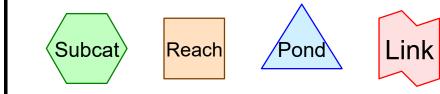

Y = Depth of Trap = 1/2 Pipe Size (Min.) = 6" - use 12" (1')

d50 = 0.0125 (Q)^4/3 / TW * Do

d50 (feet)=

0.453359837


Trap Size


Use Minimum 8" diamater stone

W= 3+2+3 = 8 Feet

L=3+3+3 = 9 Feet

Extended Dry Detention Basin

Routing Diagram for 215-181 Post-DEV (R2) OUTLET CONTROL Prepared by McKenzie Engineering Group, Inc., Printed 6/7/2021 HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Project Notes

Rainfall events imported from "TP-40-Rain.txt" for 447 MA Plymouth

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
1.770	39	>75% Grass cover, Good, HSG A (P-4d, P4c)
1.396	39	>75% Grass cover, Good, HSG A (OFFSITE) (P4c)
0.493	74	>75% Grass cover, Good, HSG C (P-4d, P4c)
0.062	98	Decks, HSG A (P4c)
0.186	98	Impervious, HSG A (OFFSITE) (P4c)
1.116	98	Paved parking, HSG A (P4c)
0.053	98	Paved parking, HSG A (OFFSITE) (P4c)
0.311	98	Paved parking, HSG C (P4c)
0.086	98	Pavement, HSG A (OFFSITE) (P4c)
0.014	98	Walks, HSG A (P4c)
0.011	98	Walks, HSG C (P4c)
0.778	30	Woods, Good, HSG A (OFFSITE) (P4c)
0.009	70	Woods, Good, HSG C (OFFSITE) (P4c)
6.287	58	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
5.462	HSG A	P-4d, P4c
0.000	HSG B	
0.825	HSG C	P-4d, P4c
0.000	HSG D	
0.000	Other	
6.287		TOTAL AREA

Printed 6/7/2021 Page 5

 HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
3.166	0.000	0.493	0.000	0.000	3.659	>75% Grass cover, Good	P-4d, P4c
0.062	0.000	0.000	0.000	0.000	0.062	Decks	P4c
0.186	0.000	0.000	0.000	0.000	0.186	Impervious	P4c
1.169	0.000	0.311	0.000	0.000	1.481	Paved parking	P4c
0.086	0.000	0.000	0.000	0.000	0.086	Pavement	P4c
0.014	0.000	0.011	0.000	0.000	0.025	Walks	P4c
0.778	0.000	0.009	0.000	0.000	0.787	Woods, Good	P4c
5.462	0.000	0.825	0.000	0.000	6.287	TOTAL AREA	

Ground Covers (all nodes)

215-181 Post-DEV (R2) OUTLET CONTROL Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Pipe Listing (all nodes) Line# Node In-Invert Out-Invert Length Slope n Width Diam/Height Inside-Fill (feet) Number (feet) (feet) (ft/ft) (inches) (inches) (inches) 1 1P 0.0100 15.0 15.50 15.23 27.0 0.013 0.0 0.0

Time span=0.00-144.00 hrs, dt=0.02 hrs, 7201 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentP-4d: Overland to Wet Basin

Runoff Area=15,966 sf 0.00% Impervious Runoff Depth=2.41" Tc=6.0 min CN=64 Runoff=1.01 cfs 0.074 af

Runoff Area=257,881 sf 31.09% Impervious Runoff Depth=1.88" Tc=6.0 min CN=58 Runoff=12.18 cfs 0.929 af

Pond 1P: Extended Dry Detention Basin

SubcatchmentP4c: Developed Site

Peak Elev=18.27' Storage=12,721 cf Inflow=13.19 cfs 1.002 af Outflow=4.42 cfs 1.002 af

Total Runoff Area = 6.287 ac Runoff Volume = 1.002 af Average Runoff Depth = 1.91" 70.73% Pervious = 4.446 ac 29.27% Impervious = 1.840 ac

Summary for Subcatchment P-4d: Overland to Wet Basin

Runoff = 1.01 cfs @ 12.09 hrs, Volume= 0.074 af, Depth= 2.41"

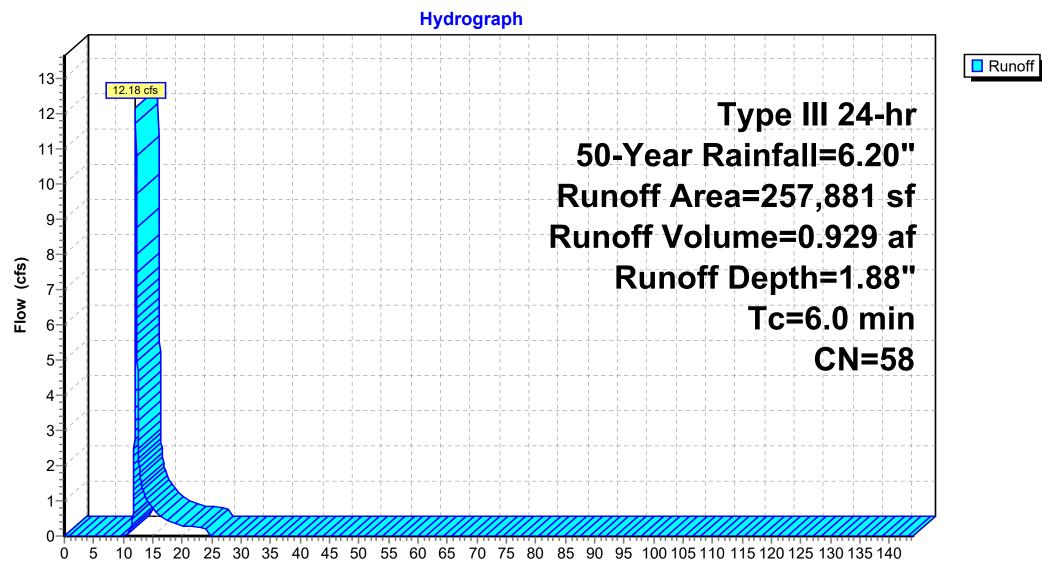
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 50-Year Rainfall=6.20"

<u>11,41</u> 15,960 15,960 Tc Leng <u>min) (fee</u> 6.0	6 64 6 th Slop		Description Direct Entry,	 					
			Sub	t P-4d: O ograph	verland to W	let Basin			
Í									Runoff
Flow (cfs)		Cfs			Run Runof	′ear F off A ff Vol	Rainfal rea=15 ume=0 f Depth Tc=0	II 24-hr I=6.20" 5,966 sf 0.074 af n=2.41" 6.0 min CN=64	
0-4	5 10	15 20 2	40 45 50 5				10 115 120 125		

6.0

Prepared by McKenzie Engineering Group, Inc. HydroCAD® 10.10-5a s/n 00452 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P4c: Developed Site


Runoff = 12.18 cfs @ 12.10 hrs, Volume= 0.929 af, Depth= 1.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs Type III 24-hr 50-Year Rainfall=6.20"

	Area (sf)	CN	Description
	72,562	39	>75% Grass cover, Good, HSG A
	48,621	98	Paved parking, HSG A
*	599	98	Walks, HSG Ă
*	2,713	98	Decks, HSG A
	10,062	74	>75% Grass cover, Good, HSG C
*	13,564	98	Paved parking, HSG C
*	491	98	Walks, HSG Č
*	406	70	Woods, Good, HSG C (OFFSITE)
*	33,887	30	Woods, Good, HSG A (OFFSITE)
*	60,799	39	>75% Grass cover, Good, HSG A (OFFSITE)
*	3,744	98	Pavement, HSG A (OFFSITE)
*	2,312	98	Paved parking, HSG A (OFFSITE)
*	8,121	98	Impervious, HSG A (OFFSITE)
	257,881	58	Weighted Average
	177,716		68.91% Pervious Area
	80,165		31.09% Impervious Area
	-		
	Tc Length	Slop	be Velocity Capacity Description
(n	nin) (feet)	(ft/f	

Direct Entry,

Subcatchment P4c: Developed Site

Time (hours)

Summary for Pond 1P: Extended Dry Detention Basin

Inflow Area =	6.287 ac, 29.27% Impervious, Inflow Depth = 1.91" for 50-Year event
Inflow =	13.19 cfs @ 12.10 hrs, Volume= 1.002 af
Outflow =	4.42 cfs @ 12.46 hrs, Volume= 1.002 af, Atten= 66%, Lag= 21.9 min
Primary =	4.42 cfs @ 12.46 hrs, Volume= 1.002 af

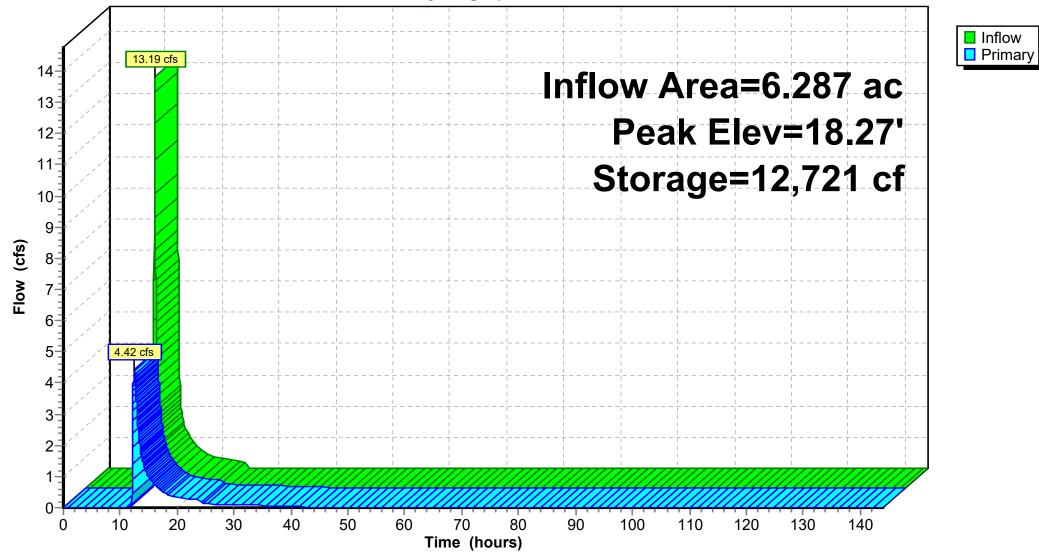
Routing by Dyn-Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.02 hrs / 2 Peak Elev= 18.27' @ 12.46 hrs Surf.Area= 6,723 sf Storage= 12,721 cf

Plug-Flow detention time= 174.9 min calculated for 1.002 af (100% of inflow) Center-of-Mass det. time= 174.6 min (1,039.6 - 865.0)

Volume	١n	vert Avai	I.Storage	Storage	Description	
#1	15	.50'	17,959 cf	Custom	Stage Data (Pri	smatic)Listed below (Recalc)
		o ()		O .	0 01	
Elevatio	on	Surf.Area		c.Store	Cum.Store	
(fee	et)	(sq-ft)	(cub	ic-feet)	(cubic-feet)	
15.	50	3,413		0	0	
16.0	00	3,794		1,802	1,802	
17.0	00	4,596		4,195	5,997	
18.0	00	5,456		5,026	11,023	
18.1	10	6,539		600	11,623	
19.0	00	7,541		6,336	17,959	
	-					
Device	Routing	g In	<u>vert Out</u>	let Devices	5	
#1	Primary	/ 15	.50' 15. 0)" Round	Culvert L= 27.0)' CPP, projecting, no headwall, Ke= 0.900
			Inle	t / Outlet Ir	vert= 15.50' / 15	5.23' S= 0.0100 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
#2	Device	1 15	.50' 2.0'	' Vert. Orif	fice/Grate C= 0	.600 Limited to weir flow at low heads
#3	Device	1 16	.75' 1.0'	long x 2.2	20' rise Sharp-C	rested Rectangular Weir2 End Contraction(s)

1.0' long x 2.20' rise Sharp-Crested Rectangular Weir2 End Contraction(s) #3 Device 1 16.75

Primary OutFlow Max=4.42 cfs @ 12.46 hrs HW=18.27' (Free Discharge)


-1=Culvert (Passes 4.42 cfs of 6.82 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.17 cfs @ 7.89 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 4.25 cfs @ 4.03 fps)

Pond 1P: Extended Dry Detention Basin

Hydrograph

RIVER MARSH VILLAGE PEMBROKE, MA 4/5/2021 REVISED 6/7/21

REQUIRED RECHARGE VOLUME (CF) "STATIC METHOD"

WATERSHED #	IMPERVIOUS AREA (SF)	TARGET DEPTH FACTOR (F) A SOIL	IMPERVIOUS AREA (SF)	TARGET DEPTH FACTOR (F) B SOIL	IMPERVIOUS AREA (SF)	TARGET DEPTH FACTOR (F) C SOIL	IMPERVIOUS AREA (SF)	TARGET DEPTH FACTOR (F) D SOIL	REQUIRED RECHARGE VOLUME (CF)
P2	0	0.60		0.35	1,504	0.25		0.10	31
P4	539	0.60		0.35	767	0.25		0.10	43
P4a	32,445	0.60		0.35	101,812	0.25		0.10	3,743
P4b	191	0.60		0.35	11,144	0.25		0.10	242
P4c	51,933	0.60		0.35	14,055	0.25		0.10	2,889
P5	487	0.60		0.35	999	0.25		0.10	45
	85,595				130,281		TOTAL		6,994

CAPTURE ADJUSTMENT

			% DIRECTED			ADJUSTED REQUIRED
	TOTAL	TOTAL	% DIRECTED TOWARDS			RECHARGE
	IMPERVIOUS	IMPERVIOUS	INFILTRATION		CAPTURE	VOLUME
WATERSHED #	AREA (SF)	COLLECTED	SYSTEM	STANDARD NO. 3 > 65% CAPTURED	ADJUSTMENT	(CF)
TOTAL SITE	215,876	150,991	69.94%	CAPTURE ADJUSTMENT REQUIRED	1.43	9,999

PROVIDED RECHARGE VOLUME (CF) UP TO ORIFICE INVERT ELEV. 18.40

REQUIRED RECHARGE VOLUME (CF)	POND	STORAGE VOLUME PROVIDED (CF)	NET STORAGE VOLUME PROVIDED (CF)
9,999	2P	10,406	407
9,999		10,406	407

TOTAL

RIVER MARSH VILLAGE PEMBROKE, MA 4/5/2021 REVISED 6/7/21

WATER QUALITY VOLUME ANALYSIS

CATCHMENT AREA	IMPERVIOUS AREA (SF) CN=98	PRECIPITATION (IN)	WATER QUALITY VOLUME REQUIRED (CF)	VOLUME IREATED SUBSURFACE CHAMBERS BELOW ORIFICE INVERT	SEE BELOW FOR WATER QUALITY TREATED BY FIRST DEFENSE UNITS
P4a	37,127	1.00	3,094		
P4b	3,536	1.00	295		
P4c	65,988	1.00	5,499		
P4d	0				
Roofs Only	104,929	1.00	8,744		
P2	1,504	1.00	125		
P4	1,306	1.00	109		
P5	1,486	1.00	124		
2P				10,406	
TOTAL	215,876		17,990		

SEDIMENT FOREBAY SIZING (0.1-INCH / IMPERVIOUS ACRE)

	WATERSHED	IMPERVIOUS AREA (SF) CN=98	0.1 INCH / IMPERVIOUS ACRE	WATER QUALITY VOLUME REQUIRED (CF)
	P4c	65,988	0.10	550
TOTAL		65,988		550

SEDIMENT FOREBAY VOLUME PROVIDED

FOREBAY	ELEVATION	AREA (SF)	CUMULATIVE VOLUME (CF)	TREATMENT VOLUME PROVIDED (CF) ELEVATIONS 17 TO 18	NET TREATMENT VOLUME PROVIDED (CF)
BASIN 1P	17.00	484.00	0	636	86
	18	788.00	636		
TOTAL			636		86

WATER QUALITY VOLUME ANALYSIS - PROPRIETARY STORMWATER TREATMENT UNITS (FIRST DEFENSE UNITS) TO TREAT REQUIRED WATER QUALITY VOLUME

	IMPERVIOUS AREA (SF) CN=98	PRECIPITATION (IN)	qu (Fig 4) Tc 6 min. (CSM/IN)	AREA (SM)	WATER QUALITY REQUIRED (CFS)
FD-1	65,988	1.00	774	2.367E-03	1.832
FD-2	3,536	1.00	774	1.268E-04	0.098
FD-3	37,127	1.00	774	1.332E-03	1.031
	106,651				

*Use 6' Diameter High Capacity First Defense Unit FOR FD-1

*Use 4' Diameter High Capacity First Defense Units For FD-1 AND FD-2

RIVER MARSH VILLAGE PEMBROKE, MA 4/5/2021 REVISED 6/7/21

DRAWDOWN WITHIN 72 HOURS ANALYSIS

POND	RAWLS RATE (IN/HR)	STORAGE VOLUME PROVIDED (CF)	BOTTOM AREA (FT2)	DRAWDOWN (HR)
2P	1.02	10,406	8,736	14

150 Longwater Dr., Suite 101 Norwell, MA 02061 Office:781.792.3900 Fax: 781.792.0333 www.mckeng.com

JOB_FIVE	RNAR	рп
Sheet NO	1	OF
CALCULATED BY	200	DATE
CHECKED BY	_	DATE

PROFESSIONAL CIVIL ENGINEERING | LAND PLANNING | LAND SURVEYING

SCALE EXTENDED Day Busins For Wa Volume = 24/25 WQV = 12 × 65983 = 5,499 CF BZIMFAL PRANI Doreni (24/125) QAVG = 549907 /24 = 229.125 = .0636CFS 3600 QMAK = 2 (QANG) = 0.127 CAS Alexa of origine opening: Quax : CA Tran Quar =. 127 GORZICE = 0.6 9: 32.2 A/SZC. 1=1.4 15.50-16.90 Volume : .127= . 6A 2(32.2)(1.4) A=.022 A=TTR2 R= A/TT = .022/TT = .034' A=1.0" (AADILES) LESE 2"dia 021Bice

Stage-Area-Storage for Pond 1P: Extended Dry Detention Basin

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
15.50	3,413	0	17.46	4,992	8,202
15.52 15.54	3,428	68 127	17.48 17.50	5,009	8,302
15.56	3,443 3,459	137 206	17.50	5,026 5,043	8,402 8,503
15.58	3,474	200	17.54	5,060	8,604
15.60	3,489	345	17.56	5,078	8,705
15.62	3,504	415	17.58	5,095	8,807
15.64	3,520	485	17.60	5,112	8,909
15.66	3,535	556	17.62	5,129	9,012
15.68	3,550	627	17.64	5,146	9,114
15.70 15.72	3,565 3,581	698 769	17.66 17.68	5,164 5,181	9,217 9,321
15.74	3,596	841	17.70	5,198	9,425
15.76	3,611	913	17.72	5,215	9,529
15.78	3,626	986	17.74	5,232	9,633
15.80	3,642	1,058	17.76	5,250	9,738
15.82 15.84	3,657	1,131	17.78	5,267	9,843
15.86	3,672 3,687	1,204 1,278	17.80 17.82	5,284 5,301	9,949 10,055
15.88	3,703	1,352	17.84	5,318	10,161
15.90	3,718	1,426	17.86	5,336	10,267
15.92	3,733	1,501	17.88	5,353	10,374
15.94	3,748	1,575	17.90	5,370	10,481
15.96 15.98	3,764 3,779	1,651 1,726	17.92 17.94	5,387 5,404	10,589
16.00	3,794	1,802	17.94	5,404	10,697 10,805
16.02	3,810	1,878	17.98	5,439	10,914
16.04	3,826	1,954	18.00	5,456	11,023
16.06	3,842	2,031	18.02	5,673	11,134
16.08	3,858	2,108	18.04	5,889	11,250
16.10 16.12	3,874 3,890	2,185 2,263	18.06 18.08	6,106 6,322	11,370 11,494
16.12	3,906	2,203 2,341	18.10	6,539	11,623
16.16	3,922	2,419	18.12	6,561	11,754
16.18	3,938	2,498	18.14	6,584	11,885
16.20	3,954	2,577	18.16	6,606	12,017
16.22	3,970	2,656	18.18	6,628	12,149
16.24 16.26	3,986 4,003	2,735 2,815	18.20 18.22	6,650 6,673	12,282 12,415
16.28	4,003	2,815	18.24	6,695	12,549
16.30	4,035	2,976	18.26	6,717	12,683
16.32	4,051	3,057	18.28	6,739	12,818
16.34	4,067	3,138	18.30	6,762	12,953
16.36	4,083	3,220	18.32	6,784	13,088
16.38 16.40	4,099 4,115	3,301 3,384	18.34 18.36	6,806 6,828	13,224 13,360
16.42	4,131	3,466	18.38	6,851	13,497
16.44	4,147	3,549	18.40	6,873	13,634
16.46	4,163	3,632	18.42	6,895	13,772
16.48	4,179	3,715	18.44	6,918	13,910
16.50 16.52	4,195 4,211	3,799 3,883	18.46 18.48	6,940 6,962	14,049 14,188
16.54	4,227	3,967	18.50	6,984	14,100
16.56	4,243	4,052	18.52	7,007	14,467
16.58	4,259	4,137	18.54	7,029	14,607
16.60	4,275	4,223	18.56	7,051	14,748
16.62	4,291	4,308	18.58	7,073	14,889
16.64 16.66	4,307 4,323	4,394 4,480	18.60 18.62	7,096 7,118	15,031 15,173
16.68	4,323 4,339	4,460 4,567	18.64	7,118	15,316
16.70	4,355	4,654	18.66	7,162	15,459
16.72	4,371	4,741	18.68	7,185	15,602
16.74	4,387	4,829	18.70	7,207	15,746
16.76	4,404	4,917	18.72	7,229	15,891
16.78 16.80	4,420	5,005 5,094	18.74 18.76	7,252 7,274	16,035 16 181
16.80	4,436 4,452	5,094 5,182	18.76 18.78	7,274 7,296	16,181 16,326
16.84	4,468	5,272	18.80	7,290	16,473
16.86	4,484	5,361	18.82	7,341	16,619

16.84	4,468	5,272	18.80	7,318	16,473
16.86	4,484	5,361	18.82	7,341	16,619
16.88	4,500	5,451	18.84	7,363	16,766
16.90	4,516	5,541	18.86	7,385	16,914
16.92	4,532	5,632	18.88	7,407	17,062
16.94	4,548	5,722	18.90	7,430	17,210
16.96	4,564	5,814	18.92	7,452	17,359
16.98	4,580	5,905	18.94	7,474	17,508
17.00	4,596	5,997	18.96	7,496	17,658
17.02	4,613	6,089	18.98	7,519	17,808
17.04	4,630	6,181	19.00	7,541	17,959
17.06	4,648	6,274			
17.08	4,665	6,367			
17.10	4,682	6,461			
17.12	4,699	6,554			
17.14	4,716	6,649			
17.16	4,734	6,743			
17.18	4,751	6,838			
17.20	4,768	6,933			
17.22	4,785	7,029			
17.24	4,802	7,125			
17.26	4,820	7,221			
17.28	4,837	7,317			
17.30	4,854	7,414			
17.32	4,871	7,512			
17.34	4,888	7,609			
17.36	4,906	7,707			
17.38	4,923	7,805			
17.40	4,940	7,904			
17.42	4,957	8,003			
17.44	4,974	8,102			
		I			

Stage-Area-Storage for Pond 2P: Infiltration Chambers

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
16.60	8,736		21.50	8,736	29,387
16.65	8,736	175	21.55	8,736	29,562
16.70	8,736	349	21.60	8,736	29,736
16.75	8,736	524	21.65	8,736	29,911
16.80	8,736	699	21.70	8,736	30,086
16.85	8,736	874	21.75	8,736	30,261
16.90	8,736	1,048	21.80	8,736	30,435
16.95	8,736	1,223	21.85	8,736	30,610
17.00	8,736	1,398	21.90	8,736	30,785
17.05	8,736	1,572	21.95	8,736	30,960
17.10	8,736	1,747	22.00	8,736	31,134
17.15	8,736	1,922	22.05	8,736	31,309
17.20	8,736	2,097	22.10	8,736	31,484
17.25	8,736	2,271	22.15	8,736	31,658
17.30	8,736	2,446	22.20	8,736	31,833
17.35	8,736	2,621	22.25 22.30	8,736	32,008
17.40 17.45	8,736 8,736	2,996 3,370	22.30	8,736 8,736	32,183
17.50	8,736	3,746	22.33	8,736	32,357 32,357
17.55	8,736	4,123	22.45	8,736	32,357
17.60	8,736	4,498	22.50	8,736	32,357
17.65	8,736	4,872	22.55	8,736	32,357
17.70	8,736	5,245	22.60	8,736	32,357
17.75	8,736	5,618	22.65	8,736	32,357
17.80	8,736	5,990	22.70	8,736	32,357
17.85	8,736	6,362	22.75	8,736	32,357
17.90	8,736	6,732	22.80	8,736	32,357
17.95	8,736	7,103	22.85	8,736	32,357
18.00	8,736	7,474	22.90	8,736	32,357
18.05	8,736	7,844	22.95	8,736	32,357
18.10	8,736	8,213	23.00	8,736	32,357
18.15	8,736	8,581	23.05	8,736	32,357
18.20	8,736	8,948	23.10	8,736	32,357
18.25	8,736	9,313	23.15	8,736	32,357
18.30	8,736	9,677	23.20	8,736	32,357
18.35 18.40	8,736 8,736	10,042 10,406	23.25 23.30	8,736 8,736	32,357 32,357
18.45	8,736	10,400	23.35	8,736	32,357
18.50	8,736	11,134	20.00	0,750	52,557
18.55	8,736	11,496			
18.60	8,736	11,857			
18.65	8,736	12,216			
18.70	8,736	12,575			
18.75	8,736	12,933			
18.80	8,736	13,291			
18.85	8,736	13,647			
18.90	8,736	14,003			
18.95	8,736	14,357			
19.00	8,736	14,711			
19.05	8,736	15,065			
19.10	8,736	15,417			
19.15	8,736	15,768			
19.20 19.25	8,736	16,118			
19.25	8,736 8,736	16,468 16,818			
19.35	8,736	17,166			
19.40	8,736	17,512			
19.45	8,736	17,856			
19.50	8,736	18,200			
19.55	8,736	18,543			
19.60	8,736	18,885			
19.65	8,736	19,226			
19.70	8,736	19,563			
19.75	8,736	19,900			
19.80	8,736	20,234			
19.85	8,736	20,568			
19.90	8,736	20,900			
19.95 20.00	8,736 8,736	21,229 21,556			
20.00	8,736 8,736	21,556			
20.05	8,736	21,001 22,204			
20.15	8,736	22,525			
20.20	8,736	22,842			
20.25	8,736	23,157			
20.30	8,736	23,468			
20.35	8,736	23,778			
20.40	8,736	24,084			
20.45	8,736	24,386			
20.50	8,736	24,685			
20.55	8,736	24,980			
20.60	8,736	25,271			
20.65	8,736	25,559			
20.70	8,736 8,736	25,842			
20.75 20.80	8,736 8,736	26,121 26 395			
20.80	8,736 8,736	26,395 26,664			
20.85 20.90	8,736 8,736	26,664 26,927			
20.90	8,736	20,927 27,182			
20.95	8,736	27,182			
21.00	8,736	27,663			
21.03	8,736	27,887			
21.15	8,736	28,100			
21.10	8,736	28,302			
21.25	8,736	28,495			
21.30	8,736	28,682			
21.35	8,736	28,863			
21.40	8,736	29,038			
21.45	8,736	29,212			

UNIVERSITY OF MASSACHUSETTS

AT AMHERST Water Resources Research Center Blaisdell House, UMass 310 Hicks Way Amherst, MA 01003

Massachusetts Stormwater Evaluation Project

(413) 545-5532 (413) 545-2304 FAX www.mastep.net

MASTEP Technology Review

Technology Name: Hydro International First Defense

Studies Reviewed: Hydro International First Defense Testing Using Maine DEP Protocol Utilizing OK-110 Feed Sand. November 2004, testing conducted October 2004.

Hydro International First Defense Ok-110 Sand TSS (SSC) Removal Confirmation Test. Jeff Dennis, Maine DEP.

First Defense Performance Evaluation -Hydro International February 2011

Date: March 15, 2011

2

Reviewer: Sarah Titus, Updated by Jerry Schoen

Rating:

Brief rationale for rating: This rating is primarily based on the 2011 study report by Hydro International. This study was conducted by the manufacturer on a full scale 4' diameter model using a laboratory testing protocol that closely followed NJ DEP recommended protocol, which protocol is considered by MASTEP as the laboratory analog to TARP Tier II field protocol. The study was well run. 5 runs were conducted at flow rates ranging from 25% - 125% of the design treatment flow rate using OK-110 Silica sand.

TARP Requirements Not Met*:

- OK-110 contains particle size distribution slightly larger than is recommended.
- Although witnessed by a 3rd party, this test was conducted by the manufacturer.
- Influent sediment concentration ranges from approximately 40 to approximately 200 mg/l. This is lower than required, but in one respect produces a more demanding test than the recommended 100-300 range, as lower concentrations are generally harder to treat effectively.

Other notes:

- A Quality Assurance Project Plan was prepared and appears to have been followed during the test.
- Scour tests were conducted according to recommended protocol. No scour was detected.
- Samples were analyzed for both SSC and TSS; removal rates were 71% and 70% respectively/

* Criteria also based on NJDEP laboratory testing guidelines.

Tc (Hours	qu) (csm/in)	Tc (Hours)	qu (csm/in)	Tc (Hours)	qu (csm/in)
0.0	1 835	2.7	197	7.1	95
0.0	3 835	2.8	192	7.2	94
0.0	5 831	2.9	187	7.3	93
0.06	7 814	3	183	7.4	92
0.08	3 795	3.1	179	7.5	91
0.	1 774	3.2	175	7.6	90
0.11	6 755	3.3	171	7.7	89
0.13	3 736	3.4	168	7.8	88
0.1	5 717	3.5	164	7.9	87
0.16	7 700	3.6	161	8	86
0.183	3 685	3.7	158	8.1	85
0.2	2 669	3.8	155	8.2	84
0.217	7 654	3.9	152	8.3	84
0.233		4	149	8.4	83
0.25	5 628	4.1	146	8.5	82
0.3		4.2	144	8.6	81
0.333		4.3	141	8.7	80
0.35		4.4	139	8.8	79
0.4		4.5	137	8.9	79
0.416		4.6	134	9	78
0.5		4.7	132	9.1	77
0.583	3 460	4.8	130	9.2	76
0.6		4.9	128	9.3	76
0.667		5	126	9.4	75
0.7		5.1	124	9.5	74
0.8		5.2	122	9.6	74
0.9	376	5.3	120	9.7	73
1		5.4	119	9.8	72
1.1		5.5	117	9.9	72
1.2		5.6	115	10	71
1.3		5.7	114		
1.4		5.8	112		
1.5		5.9	111		
1.6		6	109		
1.7		6.1	108		
1.8		6.2	106		
1.9		6.3	105		
2		6.4	104		
2.1		6.5	102		
2.2		6.6	101		
2.3	219	6.7	100		
2.4		6.8	99		
2.5	207	6.9	98		
2.6	202	7	96		

15 94

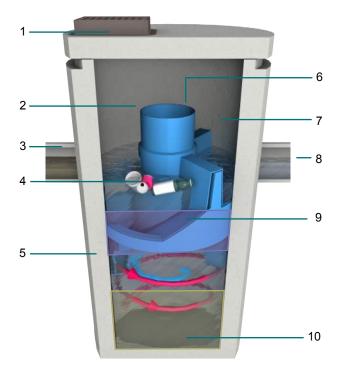
Figure 4: for First 1-inch Runoff, Table of qu values for Ia/P Curve = 0.034, listed by tc, for Type III Storm Distribution

4

First Defense®

A Simple Solution for your Trickiest Sites

Product Profile


The First Defense[®] is an enhanced vortex separator that combines an effective stormwater treatment chamber with an integral peak flow bypass. It efficiently removes sediment total suspended solids (TSS), trash and hydrocarbons from stormwater runoff without washing out previously captured pollutants. The First Defense[®] is available in several model configurations to accommodate a wide range of pipe sizes, peak flows and depth constraints (**Table 1**, next page).

Components

1. Inlet Grate (optional)

3. Inlet Pipe (optional)

- 2. Inlet Chute
- 6. Internal Bypass
 7. Outlet Chute
- 8. Outlet Pipe
- 9. Oil and Floatables Storage
- Floatables Draw Off Slot (not pictured)
 Precast Vortex Chamber
- 10. Sediment Storage Sump

Fig.1 The First Defense[®] has internal components designed to efficiently capture pollutants and prevent washout at peak flows.

Applications

- Stormwater treatment at the point of entry into the drainage line
- Sites constrained by space, topography or drainage profiles with limited slope and depth of cover
- Retrofit installations where stormwater treatment is placed on or tied into an existing storm drain line
- · Pretreatment for filters, infiltration and storage

Advantages

- · Inlet options include surface grate or multiple inlet pipes
- Integral high capacity bypass conveys large peak flows without the need for "offline" arrangements using separate junction manholes
- Proven to prevent pollutant washout at up to 500% of its treatment flow
- Long flow path through the device ensures a long residence time within the treatment chamber, enhancing pollutant settling
- Delivered to site pre-assembled and ready for installation

How it Works

The First Defense[®] has internal components designed to remove and retain gross debris, total suspended solids (TSS) and hydrocarbons (**Fig.1**).

Contaminated stormwater runoff enters the inlet chute from a surface grate and/or inlet pipe. The inlet chute introduces flow into the chamber tangentially to create a low energy vortex flow regime (magenta arrow) that directs sediment into the sump while oils, floating trash and debris rise to the surface.

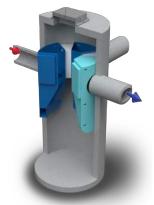
Treated stormwater exits through a submerged outlet chute located opposite to the direction of the rotating flow (blue arrow). Enhanced vortex separation is provided by forcing the rotating flow within the vessel to follow the longest path possible rather than directly from inlet to outlet.

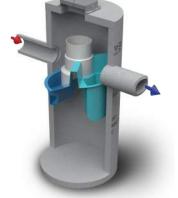
Higher flows bypass the treatment chamber to prevent turbulence and washout of captured pollutants. An integral bypass conveys infrequent peak flows directly to the outlet chute, eliminating the need for, and expense of, external bypass control structures. A floatables draw off slot functions to convey floatables into the treatment chamber prior to bypass.

First Defense®

Maintenance

The First Defense[®] needs minimal maintenance, but like all structural best management practices maintenance is necessary for the long-term protection of the environment.


Sediments captured by the First Defense[®] are stored in the sump; floatable trash and hydrocarbons are stored on the surface of the standing water. A commercially or municipally owned sump-vac is used to remove captured sediment and floatables (**Fig.2**).


More information can be found in the First Defense® Operation and Maintenance Manual, available at <u>hydro-int.com/firstdefense.</u>

First Defense[®] Sizing & Design

Design Options for Inlet and Internal Bypass Arrangements

For maximum flexibility the First Defense[®] inlet and internal bypass arrangements are available in two configurations (**Fig.3a & 3b**). Model parameters and design criteria are shown in **Table 1**.

Fig.3a Inlet configurations for all models include options for inlet grates and multiple inlet pipes.

Fig.3b First Defense[®]-*HC* with higher capacity internal bypass and larger maximum pipe diameter.

Table 1. First Defense® Models and Design Criteria.

Fig.2 Maintenance is performed with a vactor truck.

Free Stormwater Separator Sizing Calculator for Engineers

This simple online tool will recommend the best separatror, model size and online/offline arrangement based on site-specific data entered by the user.

Go to hydro-int.com/sizing to access the tool.

First Defense [®] Model	Diameter	Typical Flow Rates for TSS Treatment		Online Pipe				Minimum Distance from Outlet Invert to	Standard Distance from Outlet Invert
Number		106µm	230µm		Diameter ¹	Capacity	Storage Capacity ²	Top of Rim ³	to Sump Floor
	(ft / m)	(cfs / L/s)	(cfs / L/s)	(cfs / L/s)	(in / mm)	(gal / L)	(yd³ / m³)	(ft / m)	(ft / m)
FD-4	4/10	07/20	10/04	6 / 170	18 / 450	180 / 681	07/05	3.1 / 1.1	4.07/4.5
FD-4HC	4/1.2	0.7 / 20	1.2 / 34	18 / 510	24 / 600	191 / 723	0.7 / 0.5	2.3 - 3.9 / 0.7 - 1.2	4.97 / 1.5
FD-6	6/10	2.2 / 63	3.8 / 108	18 / 510	24 / 600	420 / 1,590	1.6 / 1.2	4.0 / 1.2	5.97 / 1.8
FD-6HC	6 / 1.8	2.2/03	3.0/100	32 / 906	30 / 750	496 / 1,878	1.0 / 1.2	3.0 - 5.1 / 0.9 - 1.6	5.9771.0

¹Contact Hydro International when larger pipe sizes are required.

²Contact Hydro International when custom sediment storage capacity is required.

³The minimum distance for the 4HC and 6HC models depends on pipe diameter.

Assinipp 150 Long	i Office Park gwater Drive, Suite 10 MA 02061	NAME: CLIENT: COUNTY:	Standard 4: Pretreatme Extended Dry Detentio River Marsh Village Pembroke, MA River Marsh, LLC Plymouth	n Basin 1P Proj. No.: 2	4/5/2021, Revised 6/7/21 SBS
	В	С	D	E	F
	BMP	TSS Removal Rate	Starting TSS Load (*F)	Amount Removed (C*D)	Remaining Load (D-E)
	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
val on	First Defense Unit	0.70	0.75	0.53	0.23
emo		0.00	0.23	0.00	0.23
TSS Removal Calculation		0.00	0.23	0.00	0.23
S U		0.00	0.23	0.00	0.23
		Total 1	SS Removal =	78%	

		NAME:	Standard 4: Total Susp Extended Dry Detentio River Marsh Village Pembroke, MA	ended Solids Calculation: n Basin 1P Proj. No.: 215-181 Date: 4/5/2021, Revised 6/7/21			
Assinipp	oi Office Park gwater Drive, Suite 10	CLIENT: COUNTY:	River Marsh, LLC	Computed by: BCM			
	MA 02061						
	В	С	D	Е	F		
	BMP	TSS Removal Rate	Starting TSS Load (*F)	Amount Removed (C*D)	Remaining Load (D-E)		
	Deep Sump Hooded Catch Basin	0.25	1.00	0.25	0.75		
val n	First Defense Unit	0.70	0.75	0.53	0.23		
TSS Removal Calculation	Extended Dry Detention Basin w/Sediment Forebay	0.50	0.23	0.11	0.11		
S R(alcu		0.00	0.11	0.00	0.11		
TS: C		0.00	0.11	0.00	0.11		
		Total 1	rss Removal =	89%			

Assinipp 150 Long	i Office Park gwater Drive, Suite 10 MA 02061	NAME: CLIENT: COUNTY:	Standard 4: Pretreatme Infiltration Chambers 2 River Marsh Village Pembroke, MA River Marsh, LLC Plymouth	2P Proj. No.: 2	4/5/2021, Revised 6/7/21 SBS
	В	С	D	E	F
	BMP	TSS Removal Rate	Starting TSS Load (*F)	Amount Removed (C*D)	Remaining Load (D-E)
	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
val on	First Defense Unit	0.70	0.75	0.53	0.23
TSS Removal Calculation		0.00	0.23	0.00	0.23
S R(alcu		0.00	0.23	0.00	0.23
ü Ü		0.00	0.23	0.00	0.23
-		Total 1	rss Removal =	78%	

M	G	Standard 4: Total Suspended Solids Calculation: Infiltration Chambers 2P NAME: River Marsh Village Proj. No.: 215-181							
MCK			River Marsh Village Pembroke, MA	-	215-181 4/5/2021, Revised 6/7/21				
	RING GROOP		River Marsh, LLC	Revised:					
		COUNTY:	Plymouth	Computed by: S					
150 Long	oi Office Park gwater Drive, Suite 10 MA 02061			Checked by: F	3CM				
	В	С	D	E	F				
		TSS Removal	Starting TSS	Amount	Remaining				
	BMP	Rate	Load (*F)	Removed (C*D)	Load (D-E)				
_				(· · · · ·				
	Deep Sump Hooded Catch Basin	0.25	1.00	0.25	0.75				
val	First Defense Unit	0.70	0.75	0.53	0.23				
TSS Removal Calculation	Extended Dry Detention Basin w/Sediment Forebay	0.50	0.23	0.11	0.11				
S Re alcu	Subsurface Chambers	0.80	0.11	0.09	0.02				
S U		0.00	0.02	0.00	0.02				
		Total 1	rss Removal =	98%					

APPENDIX E

Soil Testing Data

City/Town of Pembroke

life - Information

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

А.	. Facility information						
	River Marsh, LLC						
	Owner Name						
	293R Washington Street		Map E-17, Lot 0 & Map E-17				
	Street Address		Map/Lot #				
		MA	02061				
	City	State	Zip Code				
B.	. Site Information						
1.	(Check one) 🛛 New Construction 🗌 Upgr	rade 🗌 Repair					
2.	Soil Survey Available? 🛛 Yes 🗌 No	If yes:		Web Soil Survey	200A & 221B Soil Map Unit		
	Squamscott fine sand loam & Eldridge fine s.l.	Seasonal high watertables / slov					
	Soil Name	Soil Limitations					
	Sandy eolian deposits/sandy glaciofluvial deposits	Lake terraces, Lake Plains					
2	Surficial Geological Report Available? 🔀 Yes 🗋 No		-	Thin till			
J.		If yes: 2018 Year Published/s		Map Unit			
	Till deposits less than 10 - 15 ft. thick						
	Description of Geologic Map Unit:						
4.	Flood Rate Insurance Map Within a regulatory	r floodway? 🗍 Yes 🛛 No)				
5.	Within a velocity zone? 🗌 Yes 🛛 No						
6.	Within a Mapped Wetland Area? 🗌 Yes 🛛 🛛	No If yes, Masso	GIS Wetland Data La	ayer: Wetland Ty	уре		
7.		March 16, 2021 Month/Day/ Year	Range: 🗌 Above	Normal 🛛 Norm	al 🗌 Below Normal		
8.	Other references reviewed:						

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Dee	p Observatio	n Hole Numb	er: <u>SW-1</u> _{Hole #}	3/16/2 Date	1	12:55 Time	PM	Sunny Weather	34 degrees	42 6' 29. Latitude	2" <u>70 46' 57.3"</u> Longitude:		
1. Land	d Use Wood		ural field, vacant lot,		Pine, oak, m Vegetation			Common, s	some large bo es (e.g., cobbles,	ulder	1-3%		
	escription of L	•		etc.)	vegetation			Sunace Stone	is (e.g., cobbles,	stones, boulde	s, etc.) Siope (%)		
2. Soil	Parent Materia	al: Eolian de	posits/glaciofluv	ial deposi	ts La	ake terrac	es/plains						
			, ,			indform		Pos	tion on Landscap	e (SU, SH, BS,	, FS, TS)		
3. Dista	ances from:	Oper	n Water Body	<u>>100</u> feet		D	rainage W	/ay <u>>100</u> fe	et	We	tlands <u>>100</u> feet		
		I	Property Line	<u>145+/-</u> fee	et	Drinkin	g Water W	Vell <u>>100</u> fr	et	1	Other feet		
4. Unsui	table Material	s Present:] Yes 🛛 No	If Yes:	Disturbed S	Soil 🔲	Fill Materia		Weathered/Fra	ctured Rock	Bedrock		
5. Grou	undwater Obse	erved: 🛛 Yes	No		lf yes	s: <u>82"</u> De	epth Weeping	g from Pit	_	Depth S	tanding Water in Hole		
						Soil Log							
Denth (in	Soil Horizon	Soil Horizon	Soil Texture	zon Soil Texture	Soil Matrix: Color-	Rede	Redoximorphic Features			Fragments Volume	O a il Otrastana	Soil	011-1-
Depth (in) /Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	(Moist)	Other		
0"-11"	Ар	Sandy loam	10YR2/2				5%	5-10%	Massive	Friable			
11"-27'	Bw	Loamy sand	10YR4/6				5%	5-10%	Granular	Friable			
27"-46'	C1	Loamy sand	10YR5/6	36"	2.5Y6/3 10YR4/6	25%	5%	5-10%	Granular	Very friable	Medium		
46"-126	" C2	Sandy loam	2.5Y5/4			50%	30-40%	30-40%	Massive	Friable to firm	Very stony/ angular coarse particles		

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

De	ep Observatio	n Hole Num	Der: <u>SW-2</u> Hole #	3/ Da		12:00 PM Time		Sunny 34 degree Neather	es 42 6' 29 Latitude	9.2"	<u>70 46' 58.1"</u> Longitude:
4 1-	Wo	odland				e, oak, m			some large bo	oulder	-
1. La	nd Use: (e.g	., woodland, agr	icultural field, va	cant lot, etc		etation	•		nes (e.g., cobbles,		
De	scription of Loc	ation:									
2. So	. Soil Parent Material: Eolian deposits/glaciofluvial deposits Lake terraces/plains Lake terraces/plains Position on Landscape (SU, SH, BS, FS, TS)										
3. Di	stances from:	Open Wate	r Body <u>>10</u>	<u>0</u> feet		Drair	nage Way	<u>>100</u> feet	Wetla	inds <u>>100</u> fee	
		Proper	ty Line <u>180-</u>	<u>+/-</u> feet	D	rinking W	/ater Well	<u>>100</u> feet	Ot	herfe	et
	uitable					-					
	erials Present:			∐ Distu	rbed Soil [
5. GI	5. Groundwater Observed: Yes No If yes: <u>72"</u> Depth Weeping from Pit Depth Standing Water in Hole										
	Soil Log										
Depth (in) Soil Horizon Soil Texture Soil Matrix: Redoximorphic Features Coarse Fragments Soil Structure Consistence								Other			
Depth	(In) /Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)	Other
0''-1	2" Ap	Sandy loam	7.5YR3/3				<5%	<5%	Massive	Friable	
12"-2	5" Bw	Loamy sand	10YR4/6				<5%	<5%	Granular	Friable	
25"-{	2" C1	Sand	10YR4/4	30"	2.5Y6/3 10YR4/6	15%	<5%	<5%	Single grain	Very friable	Medium
52"-7	2" C2	Sandy loam	2.5Y4/4	52"		40%	<5%	<5%	Blocky	Moderately firm	
72"-1	26" C3	Sand/loamy sand	10YR4/4				<5%	<5%	Single grain	Very friable	

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Me	thod Used:		Obs. Hole # <u>SW-1</u>		Obs. Hole # <u>SW-2</u>		
		Depth observed standing water in observation	hole	inches		inche	S	
		Depth weeping from side of observation hole		inches inches inches <u>30</u> inches		S		
	\boxtimes	Depth to soil redoximorphic features (mottles)				<u>30</u> inches		
		Depth to adjusted seasonal high groundwater (S _h) [USGS methodology]		inches		inches		
		Index Well Number	Reading Date					
		$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$						
		Obs. Hole/Well# Sc	Sr	OWc	OW _{max} _		OWr	Sh
2. E	stin	nated Depth to High Groundwater: inche	s					

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
sys	stem?	

🛛 Yes 🗌 No

	If yes, at what depth was it observed (exclude A and O rizons)?	Upper boundary:	12 inches	Lower boundary:	126 inches
C.	If no, at what depth was impervious material observed?	Upper boundary:	inches	Lower boundary:	inches

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Signature of Soil Evaluator Alan W. Loomis, Soil Evaluator #1405 Typed or Printed Name of Soil Evaluator / License # March 16, 2021

June 30, 2022

Expiration Date of License

Name of Approving Authority Witness

Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:

A. Facility Information

Commonwealth of Massachusetts City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

	River Marsh, LLC						
	Owner Name						
	293R Washington Street			Map E-17, Lot 0 &	Lot 0 & Map E-17A, Lot 274		
	Street Address			Map/Lot #			
	Norwell	MA		02061			
	City	State		Zip Code			
B.	Site Information						
1.	(Check one) 🛛 New Construction 🗌 Upg	grade 🗌 Re	epair				
2.	Soil Survey Available? 🛛 Yes 🗌 No	If yes:			Web Soil Survey Source		
	Squamscott fine sand loam & Eldridge fine s.l.	Seasonal high w	atertables / slo	w permeability			
	Soil Name	Soil Limitations					
	Sandy eolian deposits/sandy glaciofluvial deposits	Lake terraces, La	ake Plains				
	Candy contain deposits/sandy glacionavial deposits	Landform					
3.	Surficial Geological Report Available? X Yes No	If yes:	2018		Thin till		
		··· y ·	Year Published/	Source	Map Unit		
	Till deposits less than 10 - 15 ft. thick						
	Description of Geologic Map Unit:						
4.	Flood Rate Insurance Map Within a regulator	y floodway?	Yes 🛛 No)			

5.	Within a velocity zone? Ves Xes No				
6.	Within a Mapped Wetland Area?	🖂 No	If yes, MassGIS Wetland Data Layer:	Wetland Type	
7.	Current Water Resource Conditions (USGS):	March 16, 2021 Month/Day/ Year	Range: 🗌 Above Normal	Normal	Below Normal
8.	Other references reviewed:				

200A & 221B

Soil Map Unit

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	h Hole Numb	er: <u>SW-3</u> _{Hole #}	3/16/2 ⁻ Date	1	12:25 Time	PM	Sunny Weather	34 degrees	42 6' 28. Latitude	.7"	<u>70 46' 58.6''</u> Longitude:
1. Land	Woodl				Pine, oak, m			Common, s	ome large bo	ulder		1-3%
	(0.9., 40		ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulder	rs, etc.)	Slope (%)
Des	scription of Lo	ocation:										
2. Soil P	2. Soil Parent Material: Eolian deposits/glaciofluvial deposits Lake terraces/plains Landform Position on Landscape (SU, SH, BS, FS, TS)											
											100 4	
3. Distances from: Open Water Body >100 feet Drainage Way >100 feet Wetlands >100												
Property Line 225+/- feet Drinking Water Well >100 feet Other feet 4. Unsuitable Materials Present: Yes No If Yes: Disturbed Soil Fill Material Weathered/Fractured Rock Bedrock												
4. Unsuita	adie Materiais	s Present.	Tes 🖂 No	IT Yes: L	_ Disturbed a				/veathered/Fra	CTURED ROCK		IFOCK
5. Groundwater Observed: 🛛 Yes 🗌 No If yes: <u>55"</u> Depth Weeping from Pit Depth Standing Water in Hole												
Soil Log												
Denth (in)	Depth (in) Soil Horizon (ISDA Soil Matrix: Color-Meiot (Murcoll) Soil Matrix: Color-Meiot (Murcoll) Soil Structure Consistence										Other	
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soli Structure	(Moist)	Other	
0"-9"	Ар	Sandy loam	10YR3/3				<5%	<5%	Massive	Friable		
9"-27"	Bw	Loamy sand	10YR4/6				<5%	<5%	Granular	Friable		
27"-51"	C1	Loamy sand	10YR4/3	32"	2.5Y6/3 10YR4/6	15%	<5%	<5%	Single grain	Very friable		Medium
51"-71"	C2	Sandy loam	2.5Y4/4	51"		40%	<5%	<5%	Blocky	Moderately firm		
71"-104"	C3	Sand/loamy sand	10YR4/4				<5%	<5%	Single grain	Very friable		

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	n Hole Numl	ber:								
			Hole #	Da	te	Time	We	ather	Latitude		Longitude:
1. Land	Use: (e.g.	, woodland, agr	icultural field, va	cant lot, etc.	.) Ve	getation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Descr	iption of Loca	ation:									()
2. Soil P	arent Materia	al:					Landform			Position on Land	scape (SU, SH, BS, FS, TS)
3. Distar	nces from:	Open Wate	r Body	feet		Drain	age Way _	feet	Wetla	nds fe	et
		Propert	ty Line	feet		Drinking W	ater Well	feet	Ot	her fe	et
Materia	4. Unsuitable Materials Present: Yes No If Yes: Disturbed Soil Fill Material Weathered/Fractured Rock Bedrock 5. Groundwater Observed: Yes No If Yes: Hole										
5. Groundwater Observed: Yes INO If yes: Depth Weeping from Pit Depth Standing Water in Hole Soil Log											
Depth (in)	Soil Horizon	Redox	ximorphic Features Co			Fragments Volume	Soil Structure	Soil Consistence	Other		
Depth (in)) /Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones		(Moist)	Other
						2					
			-								

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Method Used:	Obs. Hole # <u>SW-3</u>	Obs. Hole #				
	Depth observed standing water in observation hole	inches	inches inches				
	Depth weeping from side of observation hole	inches	inches				
	Depth to soil redoximorphic features (mottles)	32 inches	inches				
	 Depth to adjusted seasonal high groundwater (Sh) (USGS methodology) 	inches	inches	inches			
	Index Well Number Reading I	Date					
	$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$						
	Obs. Hole/Well# Sc Sr _	OWc	OW _{max} OW _r	Sh			
2. E	Estimated Depth to High Groundwater: inches						

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
sy	stem?	

] Yes		No
-------	--	----

b.	If yes, at what depth was it observed (exclude A and O	Upper boundary:		Lower boundary:	
Ho	rizons)?		inches		inches
C.	If no, at what depth was impervious material observed?	Upper boundary:		Lower boundary:	
	•		inches	-	inches

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Signature of Soil Evaluator Alan W. Loomis, Soil Evaluator #1405 Typed or Printed Name of Soil Evaluator / License # March 16, 2021 Date June 30, 2022

Expiration Date of License

Name of Approving Authority Witness

Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:

Commonwealth of Massachusetts City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

A	. Facility Information					
	River Marsh, LLC					
	Owner Name					
	293R Washington Street		Map E 17 Lat 0	9 Man E 174 I	-1074	
	Street Address		Map E-17, Lot 0 Map/Lot #	a Map E-17A, L	.ot 2/4	
	Norwell	MA	02061			
	01	State	Zip Code			
в	. Site Information					
1.	(Check one) 🛛 New Construction 🗌 Upg	rade 🗌 Repair				
2.	Soil Survey Available? Xes INO	If yes:		Web Soil Su		00A & 221B
	Squamscott fine sand loam & Eldridge fine s.l.	Seasonal high watertables / slo Soil Limitations	w permeability	Source	So	oil Map Unit
	Sandy eolian deposits/sandy glaciofluvial deposits	Lake terraces, Lake Plains				
3.	Surficial Geological Report Available? Xes No	If yes: 2018	-	Thin till		
	Till deposits less than 10 - 15 ft. thick Description of Geologic Map Unit:	Year Published/	Source	Map Unit		
4.	Flood Rate Insurance Map Within a regulatory	floodway? 🗌 Yes 🛛 No				
5.	Within a velocity zone? Yes No					
6.	Within a Mapped Wetland Area? Yes Xet I	No If yes, Masso	GIS Wetland Data		Netland T	
7.		May 17, 2021 Month/Day/ Year	Range: 🗌 Abo		Vetland Type	Below Normal
8.	Other references reviewed:	Nonthi Day/ Teal				

City/Town of Pembroke

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	n Hole Numb	er: <u>TP-A</u> Hole #	5/17/2 Date	1	10:40 Time	AM	Sunny	70 degrees		6"	70 46' 58.6"
1. Land	Woodl				Pine, oak, n				some large bo	Latitude oulder		Longitude: 1-3%
	(c.g., w	-	ural field, vacant lot,	etc.)	Vegetation			Surface Stone	es (e.g., cobbles,	stones, boulder	rs, etc.)	Slope (%)
Des	scription of Lo	ocation:										
2. Soil P	arent Materia	al: <u>Eolian de</u>	posits/glaciofluv	vial deposi		ake terrac	es/plains					
o						ndform			tion on Landscap			
3. Distar	nces from:		n Water Body				-	Vay <u>>100</u> fo				<u>>100</u> feet
Property Line 270+/- feet Drinking Water Well >100 feet Other 4. Unsuitable Materials Present: Yes No If Yes: Disturbed Soil Fill Material Weathered/Fractured Rock Bedrock												
4. Unsulta	idie Material	s Present:	Yes 🖾 No	If Yes: L	_ Disturbed S	Soil 📋	Fill Materia		Weathered/Fra	ctured Rock	Bec	lrock
5. Grour	ndwater Obse	erved: 🛛 Yes	🗌 No		If yes	s: <u>58"</u> De	pth Weepin	g from Pit		Depth S	tanding W	later in Hole
						Soil Log		•	-		3	
Depth (in)	Soil Horizon							A.II.				
	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soli Structure	Consistence (Moist)	Other	
0"-9"	Ар	Sandy loam	10YR3/3				5%	<5%	Massive	Friable		
9"-18"	Bw	Sandy loam	10YR4/6				<5%	<5%	Massive	Friable		99999 Anno 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 20
18"-84"	C1	Sand	2.5Y5/4	48"	2.5Y6/3 10YR4/6	25%	<5%	<5%	Single grain	Loose	Mediu	m, lenses of sandy loam
84"-120"	C2	Sand	2.5Y5/4	_			<5%	<5%	Single grain	Loose		
												99999999999999999999999999999999999999

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

De	ep Observatio	on Hole Num	ber: <u>TP-B</u> Hole #		/17/21 Pate	11:20 AN Time		Sunny 72 degre Weather	ees <u>42 6' 2</u> Latitude	9.2"	<u>70 46' 58.1"</u>	
1. Lar		odland				Pine, oak, maple			, some large b	oulder	Longitude: 1-3%	
	(e.ç	J., woodland, agi	ricultural field, va	acant lot, et	c.) Ve	getation		Surface Sto	nes (e.g., cobbles	, stones, boulders,	etc.) Slope (%)	
De	scription of Loc	ation:	*****						······			
2. Soil Parent Material: Eolian deposits/glaciofluvial deposits Lake terraces/plains												
3 Distances from: Open Water Body > 100 c												
	Property Line <u>225+/-</u> feet Drinking Water Well <u>>100</u> feet Other feet											
	Materials Present: Yes X No If Yes: Disturbed Soil Fill Material Weathered/Fractured Rock Bedrock Groundwater Observed: Yes No If Yes: No If yes: 60" Depth Weeping from Pit Depth Standing Water in Hole											
ſ				· · · · · · · · · · · · · · · · · · ·			il Log					
Depth (oth (in) Soil Horizon		Soil Texture (USDA)	Soil Matrix: Color-Moist	Redo	ximorphic Fe	atures		se Fragments by Volume	Coll Chryster	Soil	
	/Layer	(USDA)	(Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)	Other	
0''-6'	Ар	Sandy loam	7.5YR3/3				5%	<5%	Massive	Friable		
6"-20	' Bw	Sandy loam	10YR4/6				<5%	<5%	Granular	Friable		
20"-70	" C1	Sand	10YR4/4	32"	2.5Y6/3 10YR4/6	40%	<5%	<5%	Single grain	Loose	Fine-medium	
70"-10	4" C2	Sandy loam	2.5Y4/4				<5%	<5%	Blocky	Firm		
104"-10	8" C3	Sand	10YR4/4				<5%	<5%	Single grain	Loose	Medium	

Commonwealth of Massachusetts City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1. Met	hod Used:		Obs. Hole # <u>TP-A</u>	(Obs. Hole # <u>TP-B</u>			
	Depth observed standing water in observation	hole	inches	-	inches			
	Depth weeping from side of observation hole		inches					
\boxtimes	Depth to soil redoximorphic features (mottles))	48 inches	2	<u>32</u> inches			
	Depth to adjusted seasonal high groundwater (USGS methodology)	(Sh)	inches	-	inches			
	Index Well Number	Reading Date			-			
	$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$							
	Obs. Hole/Well# Sc	Sr	OWc	OW _{max}	OWr	S _h		
2. Estim	ated Depth to High Groundwater: inche	s						

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
sys	stem?	absorption

🛛 Yes 🗌 No

	If yes, at what depth was it observed (exclude A and O izons)?	Upper boundary:	18 inches	Lower boundary:	84 inches
C.	If no, at what depth was impervious material observed?	Upper boundary:	inches	Lower boundary:	inches

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Signature of Soil Evaluator	May 17, 2021 Date	
Alan W. Loomis, Soil Evaluator #1405 Typed or Printed Name of Soil Evaluator / License #	June 30, 2022 Expiration Date of License	
Name of Approving Authority Witness	Approving Authority	

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:

A Facility Information

Commonwealth of Massachusetts City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

~	a racinty mormation						
	River Marsh, LLC						
	Owner Name						
	293R Washington Street		Map E-17, Lot 0	ot 0 & Map E-17A, Lot 274			
	Street Address		Map/Lot #		T		
	01	MA	02061				
	City	State	Zip Code				
В	. Site Information						
1.	(Check one) 🛛 New Construction 🗌 Upg	grade 🗌 Repair					
2.	Soil Survey Available? Xes No	If yes:		Web Soil Survey	200A & 221B		
	Squamscott fine sand loam & Eldridge fine s.l.	Seasonal high watertables / slo Soil Limitations	w permeability	Source	Soil Map Unit		
	Sandy eolian deposits/sandy glaciofluvial deposits	Lake terraces, Lake Plains					
2		Landform					
3.	Surficial Geological Report Available? 🛛 Yes 🗌 No	If yes: 2018		Thin till			
	Till deposits less than 10 - 15 ft. thick Description of Geologic Map Unit:	Year Published/	Source	Map Unit			
4.	Flood Rate Insurance Map Within a regulatory	floodway? 🗌 Yes 🛛 No	i				
5.	Within a velocity zone? 🗌 Yes 🛛 No						
6.	Within a Mapped Wetland Area? Yes X	No If yes, Mass(GIS Wetland Data	Layer:			
7				Wetland			
		May 17, 2021 Month/Day/ Year	Range: 🔲 Abov	ve Normal 🛛 🖾 Nor	mal 🗌 Below Normal		
8.				2 (Pales)			

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

De	p Observati	on Hole Numb	Der: <u>TP-C</u> Hole #	5/17/2 Date	21	12:40 Time	РМ		72 degrees		.2"	<u>70 46' 57.3"</u>
1. Lar		dland		-	Pine, oak, r			Weather Common	some large bo	Latitude		Longitude: 3-5%
	(e.g.,		ural field, vacant lot	, etc.)	Vegetation			Surface Ston	es (e.g., cobbles,	stones, boulde	rs, etc.)	Slope (%)
C	escription of	_ocation:										
2. Soi	Parent Mater	ial: Eolian de	eposits/glacioflu	vial depos		ake terrac	es/plains					
Landform Position on Landscape (SU, SH, BS, FS, TS) 3. Distances from: Open Water Body >100 feet Drainago Woy >100 c												
Drainage Way <u>>100</u> reet Vvetlands <u>>100</u>									<u>>100</u> feet			
	Property Line 250+/- feet Drinking Water Well >100 feet Other feet											
4. Unsu	4. Unsuitable Materials Present: Yes X No If Yes: Disturbed Soil Fill Material Weathered/Fractured Rock Bedrock											
5. Gro	5. Groundwater Observed: 🛛 Yes 🔲 No If yes: <u>66''</u> Depth Weeping from Pit Depth Standing Water in Hole											
						Soil Log			-			
Depth (ir	Depth (in) Soil Horizon Soil Texture Soil Matrix: Color- Redoximorphic Features Coarse Fragments Soil											
	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)		Other
0"-8"	Ар	Sandy loam	10YR3/3				5-10%	10%	Massive	Friable		
8"-24"	Bw	Sandy loam	10YR4/4	26"	2.5Y6/3 10YR4/6	35%	5-10%	10%	Massive	Friable		
24"-108	" C1	Sandy loam	2.5Y4/4	-	TRANSLESS - Statistics - or constraints		25%	20%	Massive	Firm		v cobbles, stones, some boulder
	1											

Additional Notes: Boulder refusal @ 108"

TP C & TP D • rev. 3/15/18

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Γ	Deep (Observatio	n Hole Num	ber: <u>TP-D</u> Hole #			1:20 AM Time		Sunny 72 degre	es 42 6' 28 Latitude	3.1"	<u>70 46' 57.9"</u> Longitude:	
1. L	and U		odland , woodland, agr	icultural field, va	cant lot, etc		ne, oak, m _{jetation}		Common,	some large bo	oulder stones, boulders,	3-5%	
E	Descri	otion of Loca	ation:		·····								
2. 8	Soil Pa	irent Materia	al: Eolian d	deposits/glac	iofluvial d	leposits	V	Lake terra	aces/plains		Position on Land	scape (SU, SH, BS, FS, TS)	
3. E	Distand	ces from:	Open Wate	r Body <u>>10</u>	0 feet		Drair		<u>>100</u> feet	Wetla	ands ≥ 100 fee		
∕l l Ir	Property Line 360+/- feet Drinking Water Well >100 feet Other feet 4. Unsuitable Other feet 0												
Ma	Materials Present: Yes X No If Yes: Disturbed Soil Fill Material Weathered/Fractured Rock Bedrock												
5. C	6. Groundwater Observed: Yes No If yes: <u>78"</u> Depth Weeping from Pit Depth Standing Water in Hole												
	Soil Horizon Soil Texture Soil Matrix: Redoximorphic Features Coarse Fragments Soil												
Dept	th (in)	(in) Soil Horizon /Layer	(USDA)	Soil Matrix: Color-Moist (Munsell)	Depth	Color	Percent	% t Gravel	vy Volume Cobbles & Stones	Soil Structure	Soil Consistence (Moist)	Other	
0"	'-8''	Ар	Sandy loam	7.5YR3/3				5%	5%	Massive	Friable		
8"-	-21"	Bw	Sandy loam	10YR4/4				5-10%	5%	Massive	Friable		
21"	-54"	C1	Loamy sand	2.5Y4/4	29"	2.5Y6/3 10YR4/6	30%	5-10%	5%	Granular	Friable	Fine-medium	
54"-	-112"	C2	Sandy loam	2.5Y4/4				15-20%	20%	Massive	Firm		

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Met	thod Used:		Obs. Hole # <u>TP-C</u>		Obs. Hole # <u>TP-D</u>		
		Depth observed standing water in obser	vation hole	inches		inches		
		Depth weeping from side of observation	hole	inches		inches		
	\boxtimes	Depth to soil redoximorphic features (m	ottles)	<u>26</u> inches		<u>29</u> inches		
		Depth to adjusted seasonal high ground (USGS methodology)	water (S _h)	inches				
		Index Well Number	Reading Date					
		$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$						
		Obs. Hole/Well# Sc	Sr	OWc	OW _{max}	OWr	Sh	
2.	Estin	nated Depth to High Groundwater:	inches					

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
sys	stem?	

🗌 Yes 🗌 No

b.	If yes, at what depth was it observed (exclude A and O	Upper boundary:		Lower boundary:	
Hoi	izons)?		inches		inches
C.	If no, at what depth was impervious material observed?	Upper boundary:	inches	Lower boundary:	inches

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Che W. Loomis	May 17, 2021
Signature of Soil Evaluator	Date
Alan W. Loomis, Soil Evaluator #1405	June 30, 2022
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License

Name of Approving Authority Witness

Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

Α.	Facility	Information	

	River Marsh, LLC				
	Owner Name				
	293R Washington Street		Map E-17, Lot 0 8	& Map E-17A, Lot 274	4
	Street Address		Map/Lot #		
	and the second distribution of the second	MA	02061		
	City S	State	Zip Code		
B.	Site Information				
1.	(Check one) 🛛 New Construction 🗌 Upgr	rade 🗌 Repair			
2.	Soil Survey Available? Xes Do	If yes:		Web Soil Survey	200A & 221B
		,		Source	Soil Map Unit
	Squamscott fine sand loam & Eldridge fine s.l.	Seasonal high watertables / slo	w permeability		
	Soil Name	Soil Limitations			
	Sandy eolian deposits/sandy glaciofluvial deposits	Lake terraces, Lake Plains			
		Landform			
3.	Surficial Geological Report Available? 🛛 Yes 🗌 No	If yes: 2018		Thin till	
	Till describe have the state of the thirty	Year Published/	Source	Map Unit	
	Till deposits less than 10 - 15 ft. thick Description of Geologic Map Unit:				
	10 15-1 10				
4.	Flood Rate Insurance Map Within a regulatory	floodway? 🗌 Yes 🛛 No)		
5.	Within a velocity zone? 🗌 Yes 🛛 No				
5.	Within a velocity zone? 🗌 Yes 🛛 No				
6.	Within a Mapped Wetland Area?	No If yes, Mass	GIS Wetland Data		
7	New York Control (1997) The second control (1997) The Control (1997		Dange: 🗖 Aba	Wetland	Parameter State St
1.		May 18, 2021 Month/Day/ Year	Range: 🗌 Abo	ve Normal 🛛 Nor	ormal 🔲 Below Normal
В.		na pera Antonio uzberni 🖌 di Lin TTT			

Commonwealth of Massachusetts City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatio	n Hole Numb	er: <u>TP-E</u> Hole #	5/18/2 Date	1	10:30 Time	AM	Cloudy Weather	55 degrees	42 6' 29 Latitude	.5"	70 46' 59.0"
1. Land	Wood	land			Pine, oak, n				some large bo			Longitude: 1-3%
I. Lanu	05e (e.g., w	oodland, agricult	ural field, vacant lot,	etc.)	Vegetation				es (e.g., cobbles,		rs, etc.)	Slope (%)
Des	scription of Lo	ocation:					·····					
2. Soil Parent Material: Eolian deposits/glaciofluvial deposits Lake terraces/plains Landform Position on Landscape (SU, SH, BS, FS, TS)												
									<u>>100</u> feet			
A. 1. 1	Property Line <u>200+/-</u> feet Drinking Water Well <u>>100</u> feet Other feet feet feet feet feet 4. Unsuitable Materials Present: Yes X No If Yes: Disturbed Soil Fill Material Weathered/Fractured Rock Bedrock											
4. Unsulta	idle Material	s Present:	Yes ⊠ No	If Yes: [Disturbed S	Soil 🔲 I	Fill Materia		Weathered/Fra	ctured Rock	🗌 Bec	Irock
5. Groundwater Observed: 🛛 Yes 🔲 No If yes: <u>60"</u> Depth Weeping from Pit Depth Standing Water in Hole												
						Soil Log						
Depth (in) Soil Horizon Soil Texture Soil Matrix: Colo				or-		Coarse % by	Fragments Volume	Soil Structure	Soil			
	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	(Moist)		Other
0"-9"	Ар	Sandy loam	10YR3/3				5%	<5%	Massive	Friable		
9"-18"	Bw	Sandy loam	10YR4/4				<5%	5%	Massive	Friable		
18"-54"	C1	Loamy sand	2.5Y4/4	36"	2.5Y6/3 10YR4/6	30%	<5%	5%	Granular	Friable	V	ery fine to fine
54"-112"	C2	Sand	2.5Y5/4				<5%	<5%	Single grain	Loose		Medium
112"- 116"	C3	Sandy loam	2.5Y5/4				15%	20%	Massove	Firm		
			· · · · · · · · · · · · · · · · · · ·									
												Wenter

Additional Notes:

TP E & TP F • rev. 3/15/18

City/Town of Pembroke

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Dee	p Observatio	n Hole Numt	Der: <u>TP-F</u> Hole #	5/ Da		11:20 АМ ^{Гіте}		nny 60 degree ather	es <u>42 6' 28</u> Latitude	.5"	<u>70 46' 59.8"</u> Longitude:
1. Lan		odland , woodland, agri	icultural field, va	cant lot, etc		e, oak, ma etation	aple		some large bo les (e.g., cobbles,		etc.) 1-3% Slope (%)
Des	cription of Loca	ation:									
2. Soil	Parent Materia	al: Eolian d	deposits/glaci	ofluvial d	eposits		Lake terrac	es/plains		Position on Land	scape (SU, SH, BS, FS, TS)
3. Distances from: Open Water Body >100 feet Drainage Way >100 feet Wetlands >100 feet										t	
		Propert	ty Line <u>285-</u>	<u>⊦/-</u> feet	D	rinking W	/ater Well <u>></u>	<u>>100</u> feet	Ot	her fe	et
	4. Unsuitable Materials Present: 🔲 Yes 🖾 No If Yes: 🔲 Disturbed Soil 🔲 Fill Material 👘 🗍 Weathered/Fractured Rock 🔲 Bedrock										
	. Groundwater Observed: Yes No If yes: <u>60"</u> Depth Weeping from Pit Depth Standing Water in Hole										
	Soil Log										
	, Soil Horizon	Soil Texture	Soil Matrix:	Redo	ximorphic Fea	atures		Fragments Volume	Soil Structure	Soil Consistence (Moist)	Other
Depth (n) /Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure		Other
0"-9'	Ap	Sandy loam	7.5YR3/3				<5%	<5%	Massive	Friable	
9"-26	' Bw	Sandy loam	10YR4/4				<5%	<5%	Massive	Friable	
26"-96	5" C1	Sand	2.5Y5/4	38"	2.5Y6/3 10YR4/6	30%	5-10%	5%	Single grain	Loose	Medium
96"-10	2" C2	Sand	2.5Y4/4				20-25%	20%	Single grain	Loose	Medium - coarse Bog iron at bottom of exc.

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Method Used:		Obs. Hole # <u>TP-E</u>	Obs.	Hole # <u>TP-F</u>	
	Depth observed standing water in observation h	nole	inches		inches	
	Depth weeping from side of observation hole		inches	*********	_inches	
	Depth to soil redoximorphic features (mottles)		<u>36</u> inches	<u>38</u> inc	hes	
	Depth to adjusted seasonal high groundwater ((USGS methodology)	Sh)	inches		_inches	
	Index Well Number	Reading Date				
	$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$					
	Obs. Hole/Well# Sc	Sr	OWc	OW _{max}	OWr	Sh
2. E	stimated Depth to High Groundwater: inches	i				

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
	stem?	

🛛 Yes 🗌 No

	If yes, at what depth was it observed (exclude A and O rizons)?	Upper boundary:	26 inches	Lower boundary:	102 inches
C.	If no, at what depth was impervious material observed?	Upper boundary:	inches	Lower boundary:	inches

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Cla W. Louis	May 18, 2021	
Signature of Soil Evaluator	Date	
Alan W. Loomis, Soil Evaluator #1405	June 30, 2022	
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License	
Name of Approving Authority Witness	Approving Authority	

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

A. Facility Inform	ation
--------------------	-------

	River Marsh, LLC				
	Owner Name				
	293R Washington Street			Map E-17A, Lot 274	4
	Street Address		Map/Lot #		
		MA	02061		
	City	State	Zip Code		
В.	Site Information				
1.	(Check one) 🛛 New Construction 🗌 Upgr	rade 🗌 Repair			
2.	Soil Survey Available? 🛛 Yes 🗌 No	If yes:		Web Soil Survey Source	200A & 221B Soil Map Unit
	Squamscott fine sand loam & Eldridge fine s.l.	Seasonal high watertables / slo	w permeability	ouno	
	Soil Name	Soil Limitations	pornioubility		
	Sandy eolian deposits/sandy glaciofluvial deposits	Lake terraces, Lake Plains			
	Sandy conan deposits/sandy glaciondvial deposits	Landform			
3.	Surficial Geological Report Available? 🛛 Yes 🗌 No	lf yes: 2018		Thin till	
	,, ДЦ	Year Published/	Source	Map Unit	
	Till deposits less than 10 - 15 ft. thick Description of Geologic Map Unit:				
4.	Flood Rate Insurance Map Within a regulatory	floodway? 🗌 Yes 🖾 No)		
5.	Within a velocity zone? 🗌 Yes 🛛 No				
6	Within a Mapped Wetland Area? Yes X	No If yes, Mass	GIS Wetland Data		
			_	Wetland	
7.		May 17, 2021	Range: 🗌 Abo	ve Normal 🛛 🖾 No	ormal 🔲 Below Normal
8.	Other references reviewed:	Nonth/Day/ Year			

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	n Hole Numb	er: <u>TP-B-1-1</u> Hole #	5/17/2 Date	1	1:40 F	M		72 degrees		8"	<u>70 46' 58.4"</u>
1 1 0 0 0	Woodl	and			Pine, oak, m				ome large bo			Longitude: 3-5%
1. Land	(e.g., w	-	ıral field, vacant lot,	etc.)	Vegetation			Surface Stone	es (e.g., cobbles,	stones, boulder	rs, etc.)	Slope (%)
Des	scription of Lo	ocation:										
2. Soil P	arent Materia	al: <u>Eolian de</u>	posits/glaciofluv	ial deposi		ake terrac	es/plains					
	_					ndform			tion on Landscap	• • • •		
3. Distar	nces from:		n Water Body				-	/ay <u>≥100</u> fe		We	tlands	<u>>100</u> feet
			Property Line					Vell <u>>100</u> fe				feet
4. Unsuita	able Material	s Present:	Yes 🛛 No	If Yes: [Disturbed S	Soil 🗌 I	Fill Materia		Weathered/Fra	ctured Rock	🗌 Be	drock
5. Grour	ndwater Obse	erved: 🛛 Yes	🗌 No		If yes	s: <u>50"</u> De	pth Weeping	g from Pit		Depth S	tanding V	Vater in Hole
						Soil Log		-			0	
Depth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	oximorphic Fea	tures		Fragments Volume	Soil Structure	Soil		Other
	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soli Structure	(Moist)		Other
0"-16"	Ар	Sandy loam	10YR3/3				5%	<5%	Massive	Friable		
16"-30"	Bw	Sandy loam	10YR4/6				5%	5%	Massive	Friable		
30"-54"	C1	Loamy sand	2.5Y5/4	38"	2.5Y6/3 10YR4/6	35%	5%	5%	Granular	Very friable		
54"-108"	C2	Sandy loam	2.5Y5/4				15%	20%	Granular	Firm		

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatio	1 Hole Numl	ber: <u>TP-B-</u> Hole #			2:05 AM Time		unny 72 degree Veather	es <u>42 6' 27</u> Latitude	7.5"	<u>70 46' 58.3''</u> Longitude:		
1. Land I		odland , woodland, agri	icultural fi e ld, va	cant lot, etc		ie, oak, m ietation	aple		some large bones (e.g., cobbles,	oulder stones, boulders,	3-5%		
Descr	Description of Location:												
2. Soil Pa	2. Soil Parent Material: Eolian deposits/glaciofluvial deposits Lake terraces/plains Landform Position on Landscape (SU, SH, BS, FS, TS)												
3. Distan	ces from:	Open Wate	r Body <u>>10</u>	<u>0</u> feet		Drain	age Way	<u>>100</u> feet	Wetla	ands <u>>100</u> fee			
4 Unovite	blo	Propert	ty Line 225-	+/- feet	C	Drinking W	ater Well	<u>>100</u> feet	Ot	her fe	et		
4. Unsuita Materia		☐ Yes ⊠ I	No If Yes:	Distu	rbed Soil	🗌 Fill Mat	erial	Weathered/	Fractured Rock	Bedrock			
5. Groun	dwater Obse	erved: 🛛 Ye	s 🗌 No				f yes: <u>40''</u>				Standing Water in Hole		
r						So	il Log						
Depth (in)		Soil Texture	Soil Matrix:	Redo	ximorphic Fe	atures		e Fragments by Volume	Soil Structure	Soil Consistence	Other		
	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)	Other		
0"-16"	Ар	Sandy loam	7.5YR3/3				5%	5%	Massive	Friable			
16"-29"	Bw	Sandy loam	10YR4/4				5%	5%	Massive	Friable			
29"-41"	C1	Loamy sand	2.5Y4/4	37"	2.5Y6/3 10YR4/6	40%	10%	10%	Granular	Very friable	Fine-medium		
41"-126"	C2	Sandy loam	2.5Y4/4				15%	20%	Blocky	Firm			

Commonwealth of Massachusetts City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Me	thod Used:			Obs. Hole # <u>TP-B-1-1</u>		Obs. Hole # <u>TP-B-1-2</u>	
		Depth observed standing wa	ter in observatior	n hole	inches		inches	
		Depth weeping from side of o	observation hole		inches		inches	
	\boxtimes	Depth to soil redoximorphic f	eatures (mottles)	<u>38</u> inches		37 inches	
		Depth to adjusted seasonal h (USGS methodology)	nigh groundwater	(Sh)	inches		inches	
		Index Well Number		Reading Date				
		$S_h = S_c - [S_r \times (OW_c - OW_{max})]$	x)/OWr]					
		Obs. Hole/Well#	Sc	Sr	OWc	OW _{max} _	OWr	Sh
2. 1	Estin	nated Depth to High Groundw	ater: inch	es				

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
sys	stem?	

🗌 Yes 🗌 No

	If yes, at what depth was it observed (exclude A and O rizons)?	Upper boundary:	inches	Lower boundary:	inches
C.	If no, at what depth was impervious material observed?	Upper boundary:	inches	Lower boundary:	inches

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

107.		0	
	1	1	5
Ch	W.	Loom	1

Signature of Soil Evaluator Alan W. Loomis, Soil Evaluator #1405 Typed or Printed Name of Soil Evaluator / License # May 17, 2021 Date June 30, 2022 Expiration Date of License

Name of Approving Authority Witness

Approving Authority

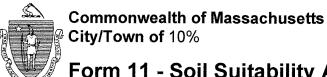
Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:

Commonwealth of Massachusetts City/Town of 10%

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

A. Facility Information


	River Marsh, LLC				
	Owner Name				
	293R Washington Street Street Address		Map E-17, Lot 0 & Map E-17A, Lot 274		
			Map/Lot #		
	Norwell M/		02061		
	City Sta	ate	Zip Code		
B.	8. Site Information				
1.	(Check one) 🛛 New Construction 🗌 Upgrad	ide 🗌 Repair			
2.	Soil Survey Available? Xes INO	If yes:	We	b Soil Survey	200A & 221B Soil Map Unit
	Squamscott fine sand loam & Eldridge fine s.l. Seasonal high watertables / slo			ice	Soli Map Unit
	Soil Name Soil Limitations		wpermeability		
	Sandy eolian deposits/sandy glaciofluvial deposits Lake terraces, Lake Plains				
3.		If yes: 2018	Thin	till	
		Year Published/S			
	Till deposits less than 10 - 15 ft. thick Description of Geologic Map Unit:				
4.	Flood Rate Insurance Map Within a regulatory floodway? 🗌 Yes 🛛 No				
5.	Within a velocity zone? 🗌 Yes 🛛 No				
6.	Within a Mapped Wetland Area? Yes No If yes, MassGIS Wetland Data Layer:				vpe
7.	Current Water Resource Conditions (USGS): Ma	Range: 🗌 Above Not			
8.					

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatior	n Hole Numb	er: <u>TP-B-1-3</u> Hole #	5/17/2 ⁻ Date	1	2:30 P Time	M	Sunny	72 degrees	42 6' 28. Latitude		70 46' 57.9"	
	Woodl	and			Pine, oak, m				ome large bo			Longitude: 3-5%	
1. Land	Use (e.g., wo	odland, agricultu	ural field, vacant lot,	etc.)	Vegetation				es (e.g., cobbles,		rs, etc.)	Slope (%)	
Des	scription of Lo	ocation:											
2 Soil F	arent Materia	al· Folian de	nosite/alaciofluv	ial denosi		ko torrao	oc/plaine						
2. Soil Parent Material: Eolian deposits/glaciofluvial deposits Lake terraces/plains Landform Position on Landscape (SU, SH, BS, FS, TS)													
3. Distances from: Open Water Body <u>>100</u> feet Drainage Way <u>>100</u> feet Wetlands <u>>100</u>												<u>>100</u> feet	
Property Line <u>425+/-</u> feet Drinking Water Well <u>>100</u> feet Other feet													
4. Unsuita	4. Unsuitable Materials Present: Yes X No If Yes: Disturbed Soil Fill Material Weathered/Fractured Rock Bedrock												
5. Groundwater Observed: 🛛 Yes 🗌 No If yes: <u>34"</u> Depth Weeping from Pit Depth Standing Water in Hole													
Soil Log													
Dopth (in) Soil Horizon Soil Matrix: Color- Redoximorphic Features Coarse Fragments Soil													
Depth (in)	/Layer	(USDA Moiet (Muncell)		Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)		Other	
0"-9"	Ар	Sandy loam	10YR3/3				5%	5%	Massive	Friable			
9"-21"	Bw	Sandy loam	10YR4/4				5%	5%	Massive	Friable			
21"-64"	C1	Loamy sand	2.5Y6/2	22"	2.5Y6/3 10YR4/6	30%	5%	5%	Blocky	Firm		n hi f	
64"-90"	C2	Sandy loam	2.5Y4/4				20%	25%	Granular	Firm	Many s	stones & boulders	
					- 101,							ан ад болун Канананан ал бай	
	••• · · · · · · · · · · · · · · · · · ·										44547 <u>4</u> 443		

Additional Notes:

^F Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatio	n Hole Numl	ber:									
-			Hole #	Da	ate	Time	We	eather	Latitude		Longitude:	
1. Land	1. Land Use: (e.g., woodland, agricultural field, vacar			cant lot, et c	.) Vegetation			Surface Sto	nes (e.g., cobbles,	stones, boulders, e	etc.) Slope (%)	
Descr	iption of Loca	ation:									Wynith and American	
2. Soil P	arent Materia	al:			4 4 4	······	Landform			Position on Lands	cape (SU, SH, BS, FS, TS)	
3. Distar	ices from:	Open Wate	r Body	feet				feet		nds fee	••••••	
		Propert	ty Line	feet		Drinking W				her fee		
4. Unsuita												
			No If Yes:	Distu	rbed Soil				Fractured Rock			
5. Groun	. Groundwater Observed: 🗌 Yes 📋 No If yes: Depth Weeping from Pit Depth Standing Water in Hole											
r	1	1		·····		So	il Log					
Depth (in)		Soil Texture	Soil Matrix:	Redox	ximorphic F	eatures		Fragments Volume	Soil Structure	Soil Consistence	Other	
	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)	Other	
						-						
			·····									
											маранан калан к	
								<u> </u>		l	NAN	

Additional Notes:

Commonwealth of Massachusetts City/Town of 10%

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Method Used:		Obs. Hole # <u>TP-B-1-3</u>	C	Obs. Hole #		
	Depth observed standing water in observation	hole	inches		inches		
	Depth weeping from side of observation hole		inches		inches		
	$oxed{\Delta}$ Depth to soil redoximorphic features (mottles)		22 inches		<u> </u>		
	 Depth to adjusted seasonal high groundwater (USGS methodology) 	(Sh)	inches	inches			
	Index Well Number	Reading Date			-		
	$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$						
	Obs. Hole/Well# Sc	Sr	OWc	OW _{max}	OWr	Sh	
2. E	stimated Depth to High Groundwater: inche	S					

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
	stem?	·

_ Yes		No
-------	--	----

	If yes, at what depth was it observed (exclude A and O rizons)?	Upper boundary:	inches	Lower boundary:	inches
C.	If no, at what depth was impervious material observed?	Upper boundary:	inches	Lower boundary:	inches

City/Town of 10%

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

(In W. Loomin	May 17, 2021	
Signature of Soil Evaluator	Date	
Alan W. Loomis, Soil Evaluator #1405	June 30, 2022	
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License	

Name of Approving Authority Witness

Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:

A Facility Information

Commonwealth of Massachusetts City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

	River Marsh, LLC				
	Owner Name				
	293R Washington Street		Map E 17 Lat 0.8 Map E	174 1 - 1 074	
	Street Address		Map E-17, Lot 0 & Map E- Map/Lot #	17A, Lot 274	
	Norwell	МА	02061		
		State	Zip Code		
3.	Site Information				
	(Check one) 🛛 New Construction 🗌 Upg	rade 🗌 Repair			
2.	Soil Survey Available? 🛛 Yes 🗌 No	If yes:	W/eb S	oil Survey	200A & 221B
	1899 (1999) (1999) (1999) (1999) (1999) (1999) (1999)		Source	on Survey	Soil Map Unit
	Squamscott fine sand loam & Eldridge fine s.l.	Seasonal high watertables / sl			oon map one
	Soil Name	Soil Limitations			
	Sandy eolian deposits/sandy glaciofluvial deposits	Lake terraces, Lake Plains			
	, , , , , , , , , , , , , , , , , , , ,	Landform			
	Surficial Geological Report Available? Xes No	If yes: 2018	Thin till		
		Year Published			
	Till deposits less than 10 - 15 ft. thick Description of Geologic Map Unit:				
	Flood Rate Insurance Map Within a regulatory	/ floodway? 🗌 Yes 🛛 N	lo		
	Within a velocity zone? 🗌 Yes 🛛 No				
	Within a Mapped Wetland Area? Yes X I	No If yes, Mas	sGIS Wetland Data Layer:		
	- <u> </u>			Wetland 1	Туре
		May 18, 2021	Range: 🗌 Above Normal	I 🛛 Norr	mal 🗌 Below Norma
	n	Month/Day/ Year			

 \otimes City/Town of Pembroke

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	n Hole Numb	er: <u>TP-B-2-1</u>	5/18/2	1	2:10 F	M		80 degrees		1"	<u>70 46' 52.1"</u>	
4	Woodl		Hole #	Date	Pine, oak, n	Time naple		Weather Common, s	ome large bo	Latitude oulder		Longitude: 3-5%	
1. Land	(e.g., w		ural fi e ld, vacant lot,	ot, etc.) Vegetation					es (e.g., cobbles,		rs, etc.)	Slope (%)	
Des	scription of Lo	ocation:											
2. Soil P	arent Materia	al: <u>Eolian de</u>	posits/glaciofluv	vial deposi		ake terrace	es/plains						
						Indform			tion on Landscap	be (SU, SH, BS,	FS, TS)		
3. Distar	nces from:	Oper	n Water Body	<u>>100</u> feet		D	rainage W	Vay <u>>100</u> fe	et	Wei	tlands	<u>>100</u> feet	
Property Line <u>30+/-</u> feet Drinking Water Well <u>>100</u> feet Other													
4. Unsuita	4. Unsuitable Materials Present: Yes No If Yes: Disturbed Soil Fill Material Weathered/Fractured Rock Bedrock												
5. Groundwater Observed: 🛛 Yes 🗌 No If yes: <u>26"</u> Depth Weeping from Pit Depth Standing Water in Hole													
						Soil Log		gnonra	-		tanung v		
Depth (in) Soil Horizon (USDA Soil Matrix: Color- Moiet (Munsell) Moiet (Munsell) Soil Centures Soil Structure Soil Structure Consistence										0.1			
Depth (m)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)		Other	
0"-13"	Ар	Sandy loam	10YR2/2				5%	10%	Massive	Friable			
13"-23"	Bw	Sandy loam	10YR4/4				5%	10%	Massive	Friable		na han an a	
23"-38"	C1	Loamy sand	2.5Y6/3	26"	2.5Y6/3 10YR4/6	40%	5%	5%	Granular	Friable			
38"-82"	C2	Dense sandy loam	2.5Y5/4				15%	20%	Blocky	Firm			
												T O LANAMAN AN A	

-Additional Notes:

Boulder refusal at 82"

TP B-2-1 & TP B-2-2 • rev. 3/15/18

City/Town of Pembroke

≤

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatio	n Hole Numł	Der: <u>TP-B-</u> Hole #			2:30 PM Time		unny 72 degree leather	es <u>42 6' 29</u> Latitude	9.0"	<u>70 46' 52.5''</u> Longitude:			
1. Land l		Odland , woodland, agri	cultural field, va	cant lot, etc		e, oak, ma etation	aple		some large bones (e.g., cobbles,	ulder stones, boulders, o	3-5%			
Descri	ption of Loca	ation:						······································	*****					
2. Soil Pa	arent Materia	al: Eolian d	leposits/glaci	iofluvial d	eposits		Lake terra	ices/plains		Position on Lands	cape (SU, SH, BS, FS, TS)			
3. Distances from: Open Water Body <u>>100</u> feet Drainage Way <u>>100</u> feet Wetlands <u>>100</u> feet														
	Property Line <u>35+/-</u> feet Drinking Water Well <u>>100</u> feet Other feet 4. Unsuitable													
	Materials Present: Yes No If Yes: Disturbed Soil Fill Material Weathered/Fractured Rock Bedrock 5. Groundwater Observed: Yes No If yes: 24" Depth Weeping from Pit Depth Standing Water in Hole													
o. croun	Soil Log													
Denth (in)	Soil Horizon Soil Toxtura Soil Matrix: Redoximorphic Features Coarse Fragments Soil													
Depth (in)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)	Other			
0"-11"	Ap	Sandy loam	10YR2/2				5%	5%	Massive	Friable				
11"-22"	Bw	Sandy loam	10YR7/1				5%	5%	Massive	Friable				
22"-35"	C1	Loamy sand/sand	2.5Y6/2	22"	2.5Y6/3 10YR4/6	40%	10%	10%	Granular	Very friable	Medium			
35"-88"	C2	Dense sandy loam	2.5Y5/4				15%	20%	Blocky	Firm	Very silty			
L	L				l	L			1					

Additional Notes:

Boulder refusal at bottom

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Me	thod Used:		Obs. Hole # <u>TP-B-2-1</u>		Obs. Hole # <u>TP-B-2-2</u>			
		Depth observed standing water in observation	hole	inches		inches			
		Depth weeping from side of observation hole		inches	inches				
	\boxtimes	Depth to soil redoximorphic features (mottles)		<u>26</u> inches <u>22</u> inches					
		Depth to adjusted seasonal high groundwater ((USGS methodology)	(S _h)	inches		inches			
		Index Well Number	Reading Date						
		$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$							
		Obs. Hole/Well# Sc	Sr	OWc	OW _{max}	OWr	Sh		
2. E	stin	nated Depth to High Groundwater: inche	S						

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
sys	stem?	

Yes No

	If yes, at what depth was it observed (exclude A and O rizons)?	Upper boundary:	inches	Lower boundary:	inches
C.	If no, at what depth was impervious material observed?	Upper boundary:	inches	Lower boundary:	inches

City/Town of Pembroke

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Chu W. Loomi	May 18, 2021	
Signature of Soil Evaluator	Date	
Alan W. Loomis, Soil Evaluator #1405	June 30, 2022	
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License	
Name of Approving Authority Witness	Approving Authority	

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:

City/Town of 10%

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

A. Facility Information

	River Marsh, LLC				
	Owner Name				
	293R Washington Street		Map E-17, Lot 0 & M	lap E-17A, Lot 274	
	Street Address		Map/Lot #		
		MA	02061 Zip Code		
	City	State	Zip Code		
B.	Site Information				
1.	(Check one) 🛛 New Construction 🗌 Upg	rade 🗌 Repair			
2.	Soil Survey Available? Xes No	If yes:			200A & 221B Soil Map Unit
	Squamscott fine sand loam & Eldridge fine s.l. Soil Name	Seasonal high watertables / slo Soil Limitations	w permeability		
	Sandy eolian deposits/sandy glaciofluvial deposits	Lake terraces, Lake Plains			
3.	Surficial Geological Report Available? Xes No	If yes: 2018 Year Published/		hin till ap Unit	
	Till deposits less than 10 - 15 ft. thick Description of Geologic Map Unit:				
4.	Flood Rate Insurance Map Within a regulatory	floodway? 🗌 Yes 🛛 No)		
5.	Within a velocity zone? Yes No				
6.	Within a Mapped Wetland Area?	No If yes, Mass	GIS Wetland Data La	yer: Wetland Ty	pe
7.		May 18, 2021 Month/Day/ Year	Range: 🗌 Above	Normal 🛛 Norma	al 🗌 Below Normal
8.	Other references reviewed:				

City/Town of 10%

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	Hole Numb	er: <u>TP-B-2-3</u> Hole #	5/18/2 ⁻ Date		1:45 P Time	M	Sunny Weather	80 degrees	42 6' 28. Latitude	9"	70 46' 51.7"
	Woodl	and	riole #		Pine, oak, m				ome large bo			Longitude: 3-5%
1. Land	Use (e.g., wo	odland, agricultu	Iral field, vacant lot, e	etc.)	Vegetation				s (e.g., cobbles,		rs, etc.)	Slope (%)
Des	scription of Lo	ocation:										
2. Soil Parent Material: Eolian deposits/glaciofluvial deposits Lake terraces/plains												
					La	ndform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)	
3. Distar	nces from:	Oper	Water Body	<u>>100</u> feet		Di	rainage W	/ay <u>>100</u> fe	et	Wet	tlands	<u>>100</u> feet
		F	Property Line	<u>35+/-</u> feet		Drinking	g Water W	/ell <u>>100</u> fe	eet	(Other	feet
4. Unsuita	ble Material	s Present:	Yes 🛛 No	If Yes:] Disturbed S	Soil 🗌 F	Fill Material		Weathered/Fra	ctured Rock	🗌 Bed	lrock
5. Grour	ndwater Obse	erved: 🛛 Yes	🗌 No		lf yes	5: <u>36''</u> De	pth Weeping	g from Pit	_	Depth S	tanding W	/ater in Hole
						Soil Log						
Depth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	ximorphic Fea	tures		Fragments Volume	Soil Structure	Soil		Other
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)		Outer
0"-11"	Ар	Sandy loam	10YR3/2				10%	10%	Massive	Friable		
11"-26"	Bw	Sandy loam	10YR4/4				10%	10%	Massive	Friable		
26"-38"	C1	Loamy sand	2.5Y4/4	36"	2.5Y6/3 10YR4/6	40%	10%	10%	Granular	Firm	м	edium - coarse
38"-72"	C2	Dense Sandy loam	2.5Y4/4				10%	20%	Blocky	Firm		Very silty
					· · ·							

Additional Notes:

Boulder or ledge refusal at 72"

City/Town of 10%

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

	Deep C	Observatior	Hole Numb	ber:								
				Hole #	Da	te	Time	Wea	ather	Latitude		Longitud e :
1.	Land U	Jse: (e.g.	woodland, agri	cultural field, va	cant lot, etc.) Ve g	getation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
	Descrip	ption of Loca	ition:									
2.	Soil Pa	arent Materia	ıl:					Landform			Position on Lands	scape (SU, SH, BS, FS, TS)
3.	Distanc	ces from:	Open Wate	r Body	feet		Drain	age Way _	feet	Wetla	nds fe	et
			Propert	y Line	feet	Γ	Drinking W	/ater Well _	feet	Ot	her fe	et
N		s Present: [Yes 🗌 I	No If Yes:			Fill Mat	erial [] Weathered/	Fractured Rock		
5.	Ground	dwater Obse	rved: 📋 Ye	s 🗌 No			1	f yes:	_ Depth Weepin	g from Pit	Depth S	Standing Water in Hole
							So	il Log				
	pth (in)		(in) Soll Horizon Soll Lexture Soll Watth.	Redox	kimorphic Fe	orphic Features Coarse Fragments % by Volume		Volume	Soil Structure Consistence	Soil Consistence	Other	
	pur(iii)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones		(Moist)	•••••
L		L	L	L			1	L	<u> </u>	I		

Additional Notes:

City/Town of 10%

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Met	thod Used:		Obs. Hole # <u>TP-B-2-3</u>	<u>3</u>	Obs. Hole 7	#		
		Depth observed standing water in observation	ion hole	inches		inch	es		
		Depth weeping from side of observation ho	le	inches		inch	es		
	\boxtimes	Depth to soil redoximorphic features (mott	les)	<u>36</u> inches					
		Depth to adjusted seasonal high groundwa (USGS methodology)	ter (S _h)	inches		inch	es		
		Index Well Number	Reading Date						
		$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$							
		Obs. Hole/Well# Sc	Sr	OWc	OW _{max} _		OWr	Sh	
2.	Estin	nated Depth to High Groundwater: ir	ches						

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
sys	stem?	

🗌 Yes 🗌 No

b.	If yes, at what depth was it observed (exclude A and O	Upper boundary:		Lower boundary:	
Ho	rizons)?		inches		inches
C.	If no, at what depth was impervious material observed?	Upper boundary:	inchee	Lower boundary:	inches
			inches		nonea

City/Town of 10%

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107

Un W. Loome	May 18, 2021
Signature of Soil Evaluator	Date
Alan W. Loomis, Soil Evaluator #1405	June 30, 2022
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License

Name of Approving Authority Witness

Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

Field Diagrams: Use this area for field diagrams:

APPENDIX F

Best Management Practices Operation and Maintenance Plans

CONSTRUCTION PHASE POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROL PLAN (BEST MANAGEMENT PRACTICES OPERATION AND MAINTENANCE PLAN)

for

River Marsh Village

In

Pembroke, Massachusetts (Assessor's Map E-17, Lot 0 & E-17A, Lot 274)

Submitted to:

TOWN OF PEMBROKE

Prepared for:

River Marsh, LLC 239R Washington Street Norwell, Massachusetts 02061

Prepared by:

Professional Civil Engineering • Project Management • Land Planning 150 Longwater Drive, Suite 101, Norwell, Massachusetts 02061 Tel.: (781) 792-3900 Facsimile: (781) 792-0333 www.mckeng.com

> April 5, 2021 Revised June 7, 2021

TABLE OF CONTENTS

	Page
Erosion and Sedimentation Controls - Best Management Practices (BMP's)	
- Structural Practices	1
- Stabilization Practices	5
- Dust Control	11
- Non-Stormwater Discharges	11
- Soil Stockpiling	11
- Anticipated Construction Schedule	12
- Inspection/Maintenance	13
- Inspection Schedule and Evaluation Checklist	14
- Spill Containment and Management Plan	16
Plans	

- Site Topographic Map (Existing Conditions Plans within Plan Set)
- Site Development Map (Grading and Drainage Plans within Plan Set)
- Site Erosion and Sedimentation Plan (Erosion and Sedimentation Control Plan within Plan Set)
- Construction Detail Plan (Construction Details within Plan Set)

<u>Construction Phase Pollution Prevention &</u> <u>Erosion and Sedimentation Control Plan</u>

Erosion and Sedimentation will be controlled at the site by utilizing Structural Practices, Stabilization Practices, and Dust Control. These practices correspond with plans entitled "River Marsh Village Comprehensive Permit Plan, Assessor's Map E-17, Lot 0 & E-17A, Lot 274) Water Street, Pembroke, MA dated September 22, 2016 as revised and approved, prepared by McKenzie Engineering Group, Inc., hereinafter referred to as the Site Plans.

Property Owner:

River Marsh, LLC 293R Washington Street Norwell, MA 02061

Developer Contact Information:

River marsh, LLC 293R Washington Street Norwell, MA 02061

Town of Pembroke Contact Information:

Pembroke Department of Public Works Eugene Fulmine, Jr., Director 100 Center Street Pembroke, MA 02359 Phone: 781-293-5620 Fax: 781-293-2964

Pembroke Conservation Commission Robert Clarke, Agent 100 Center Street Pembroke, MA 02359 Phone: 781-293-4674

Pembroke Building Department George Verry, Inspector of Buildings & Zoning Officer 100 Center Street Pembroke, MA 02359 Phone: 781-293-3864 Fax: 781-293-9250

Pembroke Zoning Board of Appeals Matthew Heins, Administrative Assistant 100 Center Street Pembroke, MA 02359 Phone: 781-294-4425 Fax: 781-709-1453

Erosion and Sedimentation Control Practices:

Structural Practices:

 <u>Compost Filter Tube Sock Barrier Controls</u> – A compost filter tube barrier will be constructed along downward slopes at the limit of work in locations shown on the plans. This control will be installed prior to major soil disturbance on the site. The sediment silt sock should be installed as shown on the Erosion Control Detail Plan.

Compost Filter Tube Design/Installation Requirements

- a) Locate the compost filter tube identified on the plans.
- b) The compost filter tube line should be nearly level through most of its length to impound a broad, temporary pool. The last 10 to 20 feet at each end of the silt sock should be swung slightly uphill (approximately 0.5 feet in elevation) to provide storage capacity.
- c) The compost filter tube shall be staked every 8 linear feet with 1-inch by 1-inch stakes.
- d) Compost filter tubes should be removed when they have served their useful purpose, but not before the upslope area has been permanently stabilized through one growing season. Retained sediment must be removed and properly disposed of or mulched and seeded.

Compost Filter Tube Inspection/Maintenance

- a) Compost filter tubes should be inspected immediately after each rainfall event of 1-inch or greater, and at least daily during prolonged rainfall. Inspect the depth of sediment, fabric tears, and to see that the stakes are firmly in the ground. Repair or replace as necessary.
- b) Remove sediment deposits promptly after storm events to provide adequate storage volume for the next rain and to reduce pressure on the sock. Sediment will be removed from behind the silt sock when it becomes about ¹/₂ foot deep at the silt sock. Take care to avoid undermining the sock during cleanout.
- c) If the fabric tears, decomposes, or in any way becomes ineffective, replace it immediately.
- d) Remove all compost filter tube materials only after the contributing drainage areas have been properly stabilized. Sediment deposits and silt sock materials remaining after stakes have been removed should be graded to conform to the existing topography and vegetated.
- 2) Stabilized Construction Entrance A stabilized construction entrances will be placed at the proposed entrances on Water Street. The stabilized construction entrances will be installed immediately after the clearing and grubbing of the site entrance and associated roadway cut/fill to maintain access to the site are completed. The stormwater runoff from the entrance will be diverted to temporary sedimentation basins alongside the proposed driveway. The construction entrance will keep mud and sediment from being tracked off the construction site onto Water Street by vehicles leaving the site. The stabilized construction entrances shall be constructed as shown on the Erosion Control Detail Plan.

Construction Entrance Design/Construction Requirements *

- a) Grade foundation for positive drainage towards the temporary sedimentation basin along the side of the roadway.
- b) Stone for a stabilized construction entrance shall consist of 1 to 3-inch stone placed on a stable foundation.
- c) Pad dimensions: The minimum length of the gravel pad should be 50 feet. The pad should extend the full width of the proposed roadway, or wide enough so that the largest construction vehicle will fit in the entrance with room to spare; whichever is greater. If a large amount of traffic is expected at the entrance, then the stabilized construction entrance should be wide enough to fit two vehicles across with room to spare.
- d) A geotextile filter fabric shall be placed between the stone fill and the earth surface below the pad to reduce the migration of soil particles from the underlying soil into the stone and vice versa. The filter fabric should be Amoco woven polypropylene 1198 or equivalent.
- e) Washing: If the site conditions are such that the majority of mud is not removed from the vehicle tires by the gravel pad, then the tires should be washed before the vehicle enters the street. The wash area should be a level area with 3-inch washed stone minimum, or a commercial rack.
- f) Water employed in the washing process shall be directed to a sediment trap or approved sediment-trapping device prior to discharge to a temporary sedimentation basin along side the site entrance drives. Sediment should be prevented from entering any watercourses.

Construction Entrance Inspection/Maintenance *

- a) The entrance should be maintained in a condition that will prevent tracking or flowing of sediment onto Water Street. This may require periodic topdressing with additional stone.
- b) The construction entrance and sediment disposal area shall be inspected weekly and after heavy rains or heavy use.
- c) Mud and sediment tracked or washed onto public road shall be immediately removed by sweeping.
- d) Once mud and soil particles clog the voids in the gravel and the effectiveness of the gravel pad is no longer satisfactory, the pad must be topdressed with new stone. Replacement of the entire pad may be necessary when the pad becomes completely clogged.
- e) If washing facilities are used, the sediment traps should be cleaned out as often as necessary to assure that adequate trapping efficiency and storage volume is available.
- f) The pad shall be reshaped as needed for drainage and runoff control.

- g) Broken road pavement on Water Street shall be repaired immediately.
- h) All temporary erosion and sediment control measures shall be removed within 30 days after final site stabilization is achieved or after the temporary practices are no longer needed. Trapped sediment shall be removed or stabilized on site. Disturbed soil areas resulting from removal shall be permanently stabilized.
- 3) <u>Inlet Protection</u> Inlet Protection will be utilized around the catch basin grates. The inlet protection will allow the storm drain inlets to be used before final stabilization. This structural practice will allow early use of the drainage system if the detention basin is already stabilized. Siltsack or equivalent will be utilized for the inlet protection. Siltsack is manufactured by ACF Environmental. The telephone number is 1-800-437-6746. Regular flow siltsack will be utilized, and if it does not allow enough storm water flow, hi-flow siltsack will be utilized.

Silt Sack (or equivalent) Inlet Protection Inspection/Maintenance Requirements *

- a) All trapping devices and the structures they protect should be inspected after every rainstorm and repairs made as necessary.
- b) Sediment should be removed from the trapping devices after the sediment has reached a maximum depth of one-half the depth of the trap.
- c) Sediment should be disposed of in a suitable area and protected from erosion by either structural or vegetative means. Sediment removed shall be disposed of in accordance with all applicable local, state, and federal regulations.
- d) The silt sack must be replaced if it is ripped or torn in any way.
- e) Temporary traps should be removed and the area repaired as soon as the contributing drainage area to the inlet has been completely stabilized.

Stabilization Practices:

Stabilization measures shall be implemented as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased, with the following exceptions.

- Where the initiation of stabilization measures by the 14th day after construction activity temporary or permanently cease is precluded by snow cover, stabilization measures shall be initiated as soon as practicable.
- Where construction activity will resume on a portion of the site within 21 days from when activities ceased, (e.g. the total time period that construction activity is temporarily ceased is less than 21 days) then stabilization measures do not have to be initiated on that portion of the site by the 14th day after construction activity temporarily ceased.
- The contractor shall provide erosion control measures around all soil stockpiles.

 <u>Temporary Seeding</u> – Temporary seeding will allow a short-term vegetative cover on disturbed site areas that may be in danger of erosion. Temporary seeding will be done at stock piles and disturbed portions of the site where construction activity will temporarily cease for at least 21 days. The temporary seedings will stabilize cleared and unvegetated areas that will not be brought into final grade for several weeks or months.

Temporary Seeding Planting Procedures *

- a) Planting should preferably be done between April 1st and June 30th, and September 1st through September 31st. If planting is done in the months of July and August, irrigation may be required. If planting is done between October 1st and March 31st, mulching should be applied immediately after planting. If seeding is done during the summer months, irrigation of some sort will probably be necessary.
- b) Before seeding, install structural practice controls. Utilize Amoco supergro or equivalent.
- c) The seedbed should be firm with a fairly fine surface. Perform all cultural operations across or at right angles to the slope. A minimum of 2 to 4-inches of tilled topsoil is required. The topsoil must have a sandy loam to silt loam texture with 15% to 20% organic content.
- d) Apply uniformly 2 tons of ground limestone per acre (100 lbs. Per 1,000 sq.ft.) or according to soil test. Apply uniformly 10-10-10 analysis fertilizer at the rate of 400 lbs. per acre (14 lbs. per 1,000 sq.ft.) or as indicated by soil test. Forty percent of the nitrogen should be in organic form. Work in lime and fertilizer to a depth of 4-inches using any suitable equipment.

Species	Seeding Rate (lbs/1,000 sq.ft.)	Seeding Rate (lbs/acre)	Recommended Seeding Dates	Seed Cover required
Annual 1 Ryegrass		40 April 1 st to June 1 st August 15 th to Sept. 15 th		¼ inch
Foxtail Millet	0.7	30	May 1 st to June 30 th	¹ ∕₂ to ¾ inch
Oats	2	80	April 1 st to July 1 st August 15 th to Sept. 15 th	1 to 1-1/2 inch
Winter Rye	3	120	August 15 th to Oct. 15 th	1 to 1-1/2 inch

e) Select the appropriate seed species for temporary cover from the following table.

Apply the seed uniformly by hydroseeding, broadcasting, or by hand.

f) Use an effective mulch, such as clean grain straw; tacked and/or tied with netting to protect seedbed and encourage plant growth.

Temporary Seeding Inspection/Maintenance *

a) Inspect within 6 weeks of planting to see if stands are adequate. Check for damage within 24 hours of the end to a heavy rainfall, defined as a 2-year storm event (i.e., 3.2 inches of rainfall within a twenty-four hour period). Stands should

be uniform and dense. Fertilize, reseed, and mulch damaged and sparse areas immediately. Tack or tie down mulch as necessary.

- b) Seeds should be supplied with adequate moisture. Furnish water as needed, especially in abnormally hot or dry weather. Water application rates should be controlled to prevent runoff.
- <u>Geotextiles</u> Geotextiles such as jute netting will be used in combination with other practices such as mulching to stabilize slopes. The following geotextile materials or equivalent are to be utilized for structural and nonstructural controls as shown in the following table.

Practice	Manufacturer	Product	Remarks
Sediment Fence	Amoco	Woven polypropylene	0.425 mm opening
		1198 or equivalent	
Construction	Amoco	Woven polypropylene	0.300 mm opening
Entrance		2002 or equivalent	
Outlet	Amoco	Nonwoven polypropylene	0.150 mm opening
Protection		4551 or equivalent	

Amoco may be reached at (800) 445-7732

Geotextile Installation

a) Netting and matting require firm, continuous contact between the materials and the soil. If there is no contact, the material will not hold the soil and erosion will occur underneath the material.

Geotextile Inspection/Maintenance *

- a) In the field, regular inspections should be made to check for cracks, tears, or breaches in the fabric. The appropriate repairs should be made.
- 3) <u>Mulching and Netting</u> Mulching will provide immediate protection to exposed soils during the period of short construction delays, or over winter months through the application of plant residues, or other suitable materials, to exposed soil areas. In areas, which have been seeded either for temporary or permanent cover, mulching should immediately follow seeding. On steep slopes, mulch must be supplemented with netting. The preferred mulching material is straw.

Mulch Maintenance *

- a) Inspect after rainstorms to check for movement of mulch or erosion. If washout, breakage, or erosion occurs, repair surface, reseed, remulch, and install new netting.
- b) Grass mulches that blow or wash away should be repaired promptly.
- c) If plastic netting is used to anchor mulch, care should be taken during initial mowing's to keep the mower height high. Otherwise, the netting can wrap up on the mower blade shafts. After a period of time, the netting degrades and becomes less of a problem.

- d) Continue inspections until vegetation is well established.
- 4) **Land Grading** Grading on fill slopes, cut slopes, and stockpile areas will be done with full siltation controls in place.

Land Grading Design/Installation Requirements

- a) Areas to be graded should be cleared and grubbed of all timber, logs, brush, rubbish, and vegetated matter that will interfere with the grading operation. All brush, tree limbs, tree trunk and stump disposal shall take place off site and within 30 days of cutting. All disposal shall be in accordance with federal, state and local regulations. Any temporary stockpiling of brush, tree limbs, tree trunks or stumps shall be surrounded with an erosion control barrier. Topsoil should be stripped and stockpiled for use on critical disturbed areas for establishment of vegetation. Cut slopes to be topsoiled should be thoroughly scarified to a minimum depth of 3-inches prior to placement of topsoil.
- b) Fill materials should be generally free of brush, rubbish, rocks, and stumps. Frozen materials or soft and easily compressible materials should not be used in fills intended to support buildings, parking lots, roads, conduits, or other structures.
- c) Earth fill intended to support structural measures should be compacted to a minimum of 90 percent of Standard Proctor Test density with proper moisture control, or as otherwise specified by the engineer responsible for the design. Compaction of other fills should be to the density required to control sloughing, erosion or excessive moisture content. Maximum thickness of fill layers prior to compaction should not exceed 9 inches.
- d) The uppermost one foot of fill slopes should be compacted to at least 85 percent of the maximum unit weight (based on the modified AASHTO compaction test). This is usually accomplished by running heavy equipment over the fill.
- e) Fill should consist of material from borrow areas and excess cut will be stockpiled in areas shown on the Site Plans. All disturbed areas should be free draining, left with a neat and finished appearance, and should be protected from erosion.

Land Grading Stabilization Inspection/Maintenance *

- a) All slopes should be checked periodically to see that vegetation is in good condition. Any rills or damage from erosion and animal burrowing should be repaired immediately to avoid further damage.
- b) If seeps develop on the slopes, the area should be evaluated to determine if the seep will cause an unstable condition. Subsurface drains or a gravel mulch may be required to solve seep problems. However, no seeps are anticipated.
- c) Areas requiring revegetation should be repaired immediately. Slopes should be limed and fertilized as necessary to keep vegetation healthy. Control undesirable vegetation such as weeds and woody growth to avoid bank stability problems in the future.

5) <u>Topsoiling</u> * – Topsoiling will help establish vegetation on all disturbed areas throughout the site during the seeding process. The soil texture of the topsoil to be used will be a sandy loam to a silt loam texture with 15% to 20% organic content.

Topsoiling Placement

- a) Topsoil should not be placed while in a frozen or muddy condition, when the subgrade is excessively wet, or when conditions exist that may otherwise be detrimental to proper grading or proposed seeding.
- b) Do not place topsoil on slopes steeper than 2.5:1, as it will tend to erode.
- c) If topsoil and subsoil are not properly bonded, water will not infiltrate the soil profile evenly and it will be difficult to establish vegetation. The best method is to actually work the topsoil into the layer below for a depth of at least 6 inches.
- 6) <u>Permanent Seeding</u> Permanent Seeding should be done immediately after the final design grades are achieved. Native species of plants should be used to establish perennial vegetative cover on disturbed areas. The revegetation should be done early enough in the fall so that a good cover is established before cold weather comes and growth stops until the spring. A good cover is defined as vegetation covering 75 percent or more of the ground surface.

Permanent Seeding Seedbed Preparation

- a) In infertile or coarse-textured subsoil, it is best to stockpile topsoil and respread it over the finished slope at a minimum 2 to 6-inch depth and roll it to provide a
- b) firm seedbed. The topsoil must have a sandy loam to silt loam texture with 15% to 20% organic content. If construction fill operations have left soil exposed with a loose, rough, or irregular surface, smooth with blade and roll.
- c) Loosen the soil to a depth of 3-5 inches with suitable agricultural or construction equipment.
- d) Areas not to receive topsoil shall be treated to firm the seedbed after incorporation of the lime and fertilizer so that it is depressed no more than ½ - 1 inch when stepped on with a shoe. Areas to receive topsoil shall not be firmed until after topsoiling and lime and fertilizer is applied and incorporated, at which time it shall be treated to firm the seedbed as described above.

Permanent Seeding Grass Selection/Application

- a) Select an appropriate cool or warm season grass based on site conditions and seeding date. Apply the seed uniformly by hydroseeding, broadcasting, or by hand. Uniform seed distribution is essential. On steep slopes, hydroseeding may be the most effective seeding method. Surface roughening is particularly important when preparing slopes for hydroseeding.
- b) Lime and fertilize. Organic fertilizer shall be utilized in areas within the 100 foot buffer zone to a wetland resource area.

c) Mulch the seedings with straw applied at the rate of ½ tons per acre. Anchor the mulch with erosion control netting or fabric on sloping areas. Amoco supergro or equivalent should be utilized.

Permanent Seeding Inspection/Maintenance *

- a) Frequently inspect seeded areas for failure and make necessary repairs and reseed immediately. Conduct or follow-up survey after one year and replace failed plants where necessary.
- b) If vegetative cover is inadequate to prevent rill erosion, overseed and fertilize in accordance with soil test results.
- c) If a stand has less than 40% cover, reevaluate choice of plant materials and quantities of lime and fertilizer. Re-establish the stand following seedbed preparation and seeding recommendations, omitting lime and fertilizer in the absence of soil test results. If the season prevents resowing, mulch or jute netting is an effective temporary cover.
- d) Seeded areas should be fertilized during the second growing season. Lime and fertilize thereafter at periodic intervals, as needed. Organic fertilizer shall be utilized in areas within the 100-foot buffer zone to a wetland resource area.

Dust Control *:

Dust control will be utilized throughout the entire construction process of the site. For example, keeping disturbed surfaces moist during windy periods will be an effective control measure, especially for construction haul roads. The use of dust control will prevent the movement of soil to offsite areas. However, care must be taken to not create runoff from excessive use of water to control dust. The following are methods of Dust Control that may be used on-site:

- Vegetative Cover The most practical method for disturbed areas not subject to traffic.
- Calcium Chloride Calcium chloride may be applied by mechanical spreader as loose, dry granules or flakes at a rate that keeps the surface moist but not so high as to cause water pollution or plant damage.
- Sprinkling The site may be sprinkled until the surface is wet. Sprinkling will be effective for dust control on haul roads and other traffic routes.
- Stone Stone will be used to stabilize construction roads; will also be effective for dust control.

Non-Stormwater Discharges:

During construction activities at the site, some water from the site will be suitable for discharge to the detention areas and/or temporary sediment basin areas. Non-stormwater discharges will be directed to recharge groundwater and to replenish wetland resource areas.

The construction de-watering and all non-stormwater discharges will be directed into a sediment dirt bag (or equivalent inlet protection) or a sediment basin. Sediment material removed shall be disposed of in accordance with all applicable local, state, and federal regulations.

The developer and site general contractor will comply with the E.P.A.'s Final General Permit for Construction De-watering Discharges.

Soil Stockpiling *:

Topsoil and subsoil from the driveway and parking area grading will be stockpiled in locations shown on the plans.

Stockpile Material Construction Procedure

- 1) Topsoil and subsoil that are stripped will be stockpiled for later distribution on disturbed areas.
- 2) The stockpiles will be located as shown on the plans. These locations will allow them to not interfere with work on the site.
- 3) Seed the stockpiles with a temporary erosion control mix if the stockpile is to remain undisturbed for more than 30 days. The stockpiles must be stable and the side slopes should not exceed 2:1.
- 4) Sediment silt sock or hay bale barrier erosion control measure should be placed surrounding each stockpile.
- 5) As needed, the stockpiled topsoil and subsoil are redistributed throughout the site.

Pollution Prevention:

Fueling and Maintenance of Equipment or Vehicles

Refueling/maintenance Rules – The site supervisor shall produce a written document received by all subcontractors and employees that delineates their responsibilities on site. This document shall include language that shall permit the maintenance of vehicles only in designated locations on the job site. In the event of mechanical failure of a vehicle, the vehicle shall be moved to the designated maintenance area on the site to perform maintenance. The site supervisor shall document receipt of these instructions by obtaining the signatures of subcontractors and individuals that may enter the site and the date in which they were notified of their responsibilities. Refueling for vehicles or equipment shall occur either within the designated washout area or shall utilize temporary drip protection measures at the location of fueling. The site supervisor or their representative shall be present at the time of any fueling procedure. The site supervisor shall have a fuel spill plan and measures on site to initiate containment and clean-up in the event a fuel spill occurs.

- Fueling operations shall take place in designated area(s) as shown on site maps. Provide temporary drip protection during fueling operations which take place outside of designated area(s). Materials necessary to address a spill shall be made readily available in a location known to the site supervisor or his/her designee.
- 2. Fueling operation procedures shall be in effect throughout the project duration.

Maintenance Requirements

1. All emergency response equipment listed in the Emergency Response Equipment Inventory shall be made readily available and kept in a designated location known to the site supervisor or his/her designee. All such materials shall be replenished as necessary to the listed amounts.

Washing of Equipment and Vehicles

Vehicle Washing Rules - The site supervisor shall produce a written document received by all subcontractors and employees that delineates their responsibilities on site. The site supervisor shall document receipt of these instructions by obtaining the signatures of subcontractors and individuals that may enter the site and the date in which they were notified of their responsibilities. This document shall include language that shall not permit vehicle washing on the job site. Concrete trucks shall be exempt from this rule. Concrete truck cleaning shall be confined within the work area and conducted in a manner to prevent water drainage beyond the specified area of work. Concrete truck washout shall be conducted in designated areas and shall not be discharged in areas which would allow wash water to leave the site or enter protected areas.

Maintenance Requirements

1. The site supervisor shall maintain a log of individuals receiving these instructions.

Storage, Handling, and Disposal of Construction Products, Materials, and Wastes

Building Products - Building products are not anticipated during this phase of construction.

Pesticides, Herbicides, Insecticides, Fertilizers, and Landscape Materials

The use of pesticides and herbicides is not currently anticipated for this site. Fertilizers and landscape materials will be used to stabilize slopes and other disturbed areas.

1. Store all fertilizers and landscape materials in designated locations. Store all weather sensitive materials in closed containers in accordance with manufacturer's recommendations.

Maintenance Requirements

1. The site supervisor shall regularly inspect the designated storage areas as well as any portions of the site under construction to ensure that all materials are properly stored. The site supervisor shall immediately address any issues and instruct personnel to secure and properly store all materials.

Diesel Fuel, Oil, Hydraulic Fluids, Other Petroleum Products, and Other Chemicals

Refueling and maintenance for vehicles or equipment shall occur either within the designated washout area or shall utilize temporary drip protection measures at the location of fueling. The site supervisor or their representative shall be present at the time of any fueling procedure. The site supervisor shall have a fuel spill plan and measures on site to initiate containment and clean-up in the event a fuel spill occurs.

Refueling and maintenance of equipment shall take place in designated areas whenever possible. Refueling or maintenance of equipment in locations other than those designated for such activity shall be performed under the supervision of the site supervisor or his/her designee and shall employ drip pans or other suitable means of preventing fuel, hydraulic fluid, etc. from spilling or being otherwise carried offsite or into protected areas.

Maintenance Requirements

1. All emergency response equipment listed in the Emergency Response Equipment Inventory shall be made readily available and kept in a designated location known to the site supervisor or his/her designee. All such materials shall be replenished as necessary to the listed amounts.

Hazardous or Toxic Waste

(Note: Examples include paints, solvents, petroleum-based products, wood preservatives, additives, curing compounds, acids.)

Hazardous or toxic waste associated with paints, solvents, petroleum-based products, wood preservatives, additives, curing compounds, acids shall be collected in approved containers and disposed of in accordance with municipal, state and federal regulations.

Hazardous or toxic waste shall be collected in approved containers and disposed of in accordance with municipal, state and federal regulations. Hazardous and toxic waste shall not be disposed of in solid waste containers intended for non-hazardous construction debris.

Maintenance Requirements

1. The site supervisor shall regularly inspect all portions of the project under construction and ensure that all hazardous or toxic materials are disposed of in accordance with the practices detailed above and shall immediately correct any improper disposal practices.

Construction and Domestic Waste

(Note: Examples include packaging materials, scrap construction materials, masonry products, timber, pipe and electrical cuttings, plastics, styrofoam, concrete, and other trash or building materials.)

Construction and domestic waste shall be disposed of in a trash receptacle (dumpster) which shall be removed and disposed of at an approved land fill.

Recyclable waste material shall be stored in an appropriate container or in a designated location on site until it can be removed.

1. Trash receptacles (dumpsters) and recyclable waste material containers shall be located as needed throughout the site.

Maintenance Requirements

 The site supervisor shall inspect all trash receptacles and containers to confirm that construction and domestic waste is properly contained, and shall also ascertain that waste is being picked up in a timely manner to ensure that no receptacles are overflowing. Pick-up schedules shall be modified or the number of receptacles shall be increased as needed.

Sanitary Waste

During the construction process, portable toilets will be provided in an appropriate location during the construction process.

Maintenance Requirements

1. The site supervisor shall execute a contract with a vendor to supply and maintain portable toilets throughout the site for the project duration. The site supervisor shall determine if a sufficient number of toilets are present to meet staffing levels and shall ensure that the toilets are regularly and properly maintained.

Washing of Applicators and Containers used for Paint, Concrete or Other Materials

Concrete washout shall be restricted to designated areas. Paints, form release oils, curing compounds, etc. shall be recycled and/or disposed of utilizing appropriate containers in accordance with manufacturer's recommendations and EPA guidelines.

- 1. Install straw bale and plastic liner washout pit at the designated location on site. Concrete trucks shall wash out only at washout pit or other similar acceptable facility such as a portable roll-off washout pit.
- 2. Provide suitable containers for recycling or disposal for cleanup of paints, form release oils, curing compounds, etc.

Maintenance Requirements

- The site supervisor shall inspect concrete washout pits (or other acceptable facility) to ensure that they are properly maintained. If necessary, wash water in a concrete washout pit shall be vacuumed off and the hardened concrete broken up and recycled. Wash water and broken up concrete shall be properly disposed of at a suitable facility. If necessary the wash out pit shall be repaired and relined with plastic prior to continued use.
- 2. Containers for waste paint, form release oil, curing compounds, etc. shall be sealed and removed from the site and properly disposed of at a suitable facility. Empty containers shall replace those being removed for disposal.

<u>Fertilizers</u>

Fertilizers shall be used only as necessary to establish vegetative stabilized slopes and disturbed areas. Apply at recommended rates. Use only slow release fertilizers to minimize discharge of nitrogen or phosphorous.

- 1. Store all fertilizers in designated locations. Store all weather sensitive materials in closed containers in accordance with manufacturer's recommendations.
- 2. To prevent accidental release of fertilizers, the site supervisor shall attempt to coordinate delivery of fertilizers to coincide with application and reduce the need to warehouse large quantities on-site.

Maintenance Requirements

1. Site supervisor shall make regular inspections to ensure that fertilizer is being applied at proper rates and that all perimeter controls are in place and properly maintained to control runoff which may contain fertilizer. Stored fertilizer shall be properly covered or enclosed in a designated location to prevent introduction into stormwater runoff.

Spill Prevention and Response

The site supervisor or their representative shall be present on the job site at all times during the course of work and shall be present during the delivery, removal of any liquid/chemical materials to or from the job site. They will also be present during any refueling practices. All subcontractors will be notified of their responsibilities in writing. In the event a spill occurs, the site supervisor shall be notified immediately.

The site supervisor shall have in place a spill prevention plan and resources to contain and clean up any potential spills in a timely manner. Refer to the following Spill Containment & Management Plan, including Spill Report, Emergency Response Equipment Inventory, and Emergency Notification and phone numbers.

Inspection/Maintenance:

Operator personnel must inspect the construction site at least once every 14 calendar days and within 24 hours of a storm event of ½-inch or greater. The applicant shall be responsible to secure the services of a licensed engineer or similar professional (inspector) on an on-going basis throughout all phases of the project. Refer to the Inspection/Maintenance Requirements presented earlier in the "Structural and Stabilization Practices." The inspector should review the erosion and sediment controls with respect to the following:

- Whether or not the measure was installed/performed correctly.
- Whether or not there has been damage to the measure since it was installed or performed.
- What should be done to correct any problems with the measure.

The inspector should complete the Stormwater Management Construction Phase BMP Inspection Schedule and Evaluation Checklist, as attached, for documenting the findings and should request the required maintenance or repair for the pollution prevention measures when the inspector finds that it is necessary for the measure to be effective. The inspector should notify the appropriate person to make the changes and submit copies of the form to the Pembroke Conservation Commission upon request.

It is essential that the inspector document the inspection of the pollution prevention measures. These records will be used to request maintenance and repair and to prove that the inspection and maintenance were performed. The forms list each of the measures to be inspected on the site, the inspector's name, the date of the inspection, the condition of the measure/area inspected, maintenance or repair performed and any changes which should be made to the Pollution Prevention & Erosion and Sedimentation Control Plan to control or eliminate unforeseen pollution of storm water.

Project Location: River Marsh Village 0 Water Street, Pembroke, MA Stormwater Management – Construction Phase Best Management Practices – Inspection Schedule and Evaluation Checklist

Construction Practices

Best Management Practice	Inspection Frequency	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/Repair Needed: (List Items)	Date of Cleaning/ Repair	Performed by
Siltsock Erosion Control Barrier	After heavy rainfall events (minimum weekly)			 Sediment level Material tears or repairs 	_yes		
Stabilized Construction Entrance	After heavy rainfall events (minimum weekly)			1. Sediment build-up or clogging	yesno		
Inlet Protection	After heavy rainfall events (minimum weekly)			 Sediment level Sack tears or damage 	yesno		
Temporary Seeding	After heavy rainfall events (minimum weekly)				_]yes _]no		
Geotextiles	After heavy rainfall events (minimum weekly)				yesno		
Mulching & Netting	After heavy rainfall events (minimum weekly)				yesno		
Land Grading	After heavy rainfall events (minimum weekly)				yesno		

Date:

Topsoiling	After heavy rainfall events (minimum weekly)			ye:	s 🗌no	
Permanent Seeding	After heavy rainfall events (minimum weekly)			□ye	s 🗌no	
Dust Control	After heavy rainfall events (minimum weekly)			□ye	s 🗌no	

(1) Refer to the Massachusetts Stormwater Handbook issued January 2, 2008.

Notes (Include deviations from : Site Plan Approval or Order of Conditions, Construction Sequence and Approved Plan):

Stormwater Control Manager _____

Spill Containment and Management Plan

Initial Notification

In the event of a spill, the facility manager will be notified immediately.

Facility Managers (name) _______

Assessment - Initial Containment

The supervisor will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. The supervisor will first contact the Fire Department and then notify the Police Department, Department of Public Works, Board of Health and Conservation Commission. The fire department is ultimately responsible for matters of public health and safety and should be notified immediately.

Contact:	Phone Number:
Fire Department:	911
Police Department:	911
Department of Public Works:	(781) 293 5620
Board of Health Phone:	(781) 293 2718
Conservation Commission Phone:	(781) 293 4674

Further Notification

Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the facility office and readily accessible to all employees.

HAZARDOUS WASTE / OIL SPILL REPORT

Date <u>//</u>		Time	AM / PM		
Exact location (Tra	nsformer #)				
Type of equipment					
S / N					
On or near water					
	□ No	ii yoc	, name of body of	water	
Type of chemical /	oil spilled				
Amount of chemica					
Cause of spill					
Measures taken to	contain or cle	an up spill			
	. /				
Amount of chemica			Method		
Material collected a		•			
dru		-			
dru		-			
		-			
Location and metho	od of debris di	sposal			
Name and address	of any persor	n, firm, or corpo	oration suffering da	amages	
Procedures, metho	d, and precau	tions instituted	to prevent a simil	ar occurrence from	recurring
Spill reported to Ge	eneral Office b	Time	AM / PM		
Spill reported to DE	P / National F	Response Cent	er by		
DEP Date/	1	Time	AM / PM	Inspector	
NRC Date /	1	Time	AM / PM	Inspector	

EMERGENCY RESPONSE EQUIPMENT INVENTORY

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.

-- SORBENT PADS

- 1 BALE
- -- SAND BAGS (empty)
- -- SPEEDI-DRI ABSORBENT
- -- SQUARE END SHOVELS
- -- PRY BAR

- 5
- 1-40LB BAGS
- 1 1

EMERGENCY NOTIFICATION PHONE NUMBERS

1.	FACILITY MANAGER	
	NAME:	BEEPER:
	PHONE:	CELL PHONE:
	ALTERNATE:	
		BEEPER: N/A
	PHONE:	CEL PHONE:
2.	FIRE DEPARTMENT	
	EMERGENCY: 911	
	BUSINESS: (781) 293 2300	
	POLICE DEPARTMENT	
	EMERGENCY: 911	
	BUSINESS: (781) 293 6363	
	DEPARTMENT OF PUBLIC WORKS	
	BUSINESS: (781) 293 5620	
3.	MASSACHUSETTS DEPARTMENT OF	ENVIRONMENTAL PROTECTION
-	EMERGENCY: (617) 556-1133	
	SOUTHEAST RÈGIÓN - LAKEV	'ILLE OFFICE: (508) 946-2700
4		
4.	NATIONAL RESPONSE CENTER PHONE: (800) 424-8802	
	FIIONE. (000) 424-0002	
	ALTERNATE: U.S. ENVIRONMENTAL	PROTECTION AGENCY
	EMERGENCY: (617) 223-7265	
	BUSINESS: (617) 860-4300	
5.	DEPARTMENT OF PUBLIC WORKS	
5.	CONTACT: Director of Public W	lorks Eugene Fulmine .Ir
	PHONE: (781) 293 5620	
	CONSERVATION COMMISSION	
	CONTACT: Conservation Agent	t, Robert Clarke
	PHONE: (781) 293 4674	
	BOARD OF HEALTH	
	CONTACT: Health Agent, Lisa (Cullity
	PHONE: (781) 293 2718	

POST-DEVELOPMENT BEST MANAGEMENT PRACTICE OPERATION AND MAINTENANCE PLAN & LONG-TERM POLLUTION PREVENTION PLAN

for

River Marsh Village

In

Pembroke, Massachusetts (Assessor's Map E-17, Lot 0 & E-17A, Lot 274)

Submitted to:

TOWN OF PEMBROKE

Prepared for:

River Marsh, LLC 239R Washington Street Norwell, Massachusetts 02061

Prepared by:

Professional Civil Engineering • Project Management • Land Planning 150 Longwater Drive, Suite 101, Norwell, Massachusetts 02061 Tel.: (781) 792-3900 Facsimile: (781) 792-0333 www.mckeng.com

> April 5, 2021 Revised June 7, 2021

TABLE OF CONTENTS

Long Term Best Management Practices (BMP's)	Page
- Responsible Party Contact Information	1
- Long-Term Operation and Maintenance	1
- BMP Operation and Maintenance	2
- Maintenance Responsibilities	4
- Long-Term Pollution Prevention Plan	4
- Inspection Schedule and Evaluation Checklist	7
- Spill Containment and Management Plan	8
- First Defense Unit Operation & Maintenance Manual	12

Post-Development Best Management Practice Operation and Maintenance Plan & Long-Term Pollution Prevention Plan

Post-Development Best Management Practices (BMPs) Operation and Maintenance Plan

Responsible Party/Property Owner/Developer contact information: Property Owner:

River March, LLC 293R Washington Street Norwell, MA 02061

Developer Contact Information: River Marsh, LLC 293R Washington

293R Washington Street Norwell, MA 02061

Town of Pembroke Contact Information:

Pembroke Department of Public Works Eugene Fulmine, Jr., Director 100 Center Street Pembroke, MA 02359 Phone: 781-293-5620 Fax: 781-293-2964

Pembroke Conservation Commission Robert Clarke, Agent 100 Center Street Pembroke, MA 02359 Phone: 781-293-4674

Pembroke Building Department George Verry, Inspector of Buildings & Zoning Officer 100 Center Street Pembroke, MA 02359 Phone: 781-293-3864 Fax: 781-293-9250

Long-Term Operations and Maintenance General Conditions

- 1. The property owner shall be responsible for scheduling regular inspections and maintenance of the stormwater BMP's as illustrated on the design plans and detailed in the following long-term operations and maintenance plan.
- 2. All Stormwater BMP's shall be operated and maintained in accordance with the design plans and the following Long-Term Operations and Maintenance Plan.
- 3. The owner shall:

- Maintain an Operation and Maintenance Log (see Attachment A) for the last three years. The Log shall include all BMP inspections, repairs, replacement activities and disposal activities (disposal material and disposal location shall be included in the Log);
- b. Make the log available to the Pembroke Department of Public Works and Planning Board upon request;
- c. Allow members and agents of the Pembroke Department of Public Works to enter the premises and ensure that the Owner has complied with the Operation and Maintenance Plan requirements for each BMP.
- 4. A recommended inspection and maintenance schedule is outlined below based on statewide averages. This inspection and maintenance schedule should be adhered to at a minimum for the first year of service of all BMP's referenced in this document. At the commencement of the first year of service, a more accurate inspection/maintenance schedule should be determined based on the level of service for this site.

Best Management Practices Operations and Maintenance

1. Paved Areas –Sweepers shall sweep paved areas periodically during dry weather to remove excess sediments and to reduce the amount of sediments that the drainage system shall have to remove from the runoff. The sweeping shall be conducted primarily between March 15th and November 15th. Special attention should be made to sweeping paved surfaces in March and April before spring rains wash residual sand into the drainage system.

The frequency of sweeping shall average:

- Monthly if by a high-efficiency vacuum sweeper
- Bi-weekly if by a regenerative air sweeper
- Weekly if by a mechanical sweeper

Salt used for de-icing on the parking lot during winter months shall be limited as much as possible as this will reduce the need for removal and treatment. Sand containing the minimum amount of calcium chloride (or approved equivalent) needed for handling may be applied as part of the routine winter maintenance activities.

Cost: The property owner should consult local sweeping contractors for detailed cost estimates.

2. Catch Basins - Catch basin grates shall be checked quarterly and following heavy rainfalls to verify that the inlet openings are not clogged by debris. Debris shall be removed from the grates and disposed of properly. Deep sump catch basins shall be inspected and cleaned bi-annually of all accumulated sediments. Catch basins with hoods shall be inspected annually to check oil build-up and outlet obstructions. Material shall be removed from catch basins and disposed of in accordance with all applicable regulations.

Cost: Estimated \$50 - \$100 per cleaning as needed. The property owner should consult local vacuum cleaning contractors for detailed cost estimates.

3. Sediment Forebay Areas – The sediment forebay areas shall be checked for sediment and debris accumulation on a monthly basis and cleaned quarterly. Additional inspections should be scheduled during the first few months to make sure that the vegetation becomes adequately established. Trash, leaves, branches, etc. shall be removed from facility. Silt, sand and sediment, if significant accumulation occurs, shall be removed by hand annually. Material removed from the areas shall be disposed of in accordance with all applicable local, state, and federal regulations. Where applicable by design, mow grassed areas 2 to 12 times per year as necessary. Any slope erosion within the facilities shall be stabilized and repaired as soon as practical.

Do not store snow in the sediment forebay areas. Care must be taken during plowing operations to prevent snow from being plowed into the sediment forebay area.

Cost: Estimated \$100 - \$200 per cleaning as needed. The Owner should consult local landscape contractors for a detailed cost estimate.

4. Extended Dry Detention Basin - The extended dry detention basin, inlet and vehicular access shall be checked for debris accumulation on a quarterly basis. Additional inspections should be scheduled during the first few months to make sure that the vegetation becomes adequately established in the infiltration basin and that the facility is functioning as intended. Trash, leaves, branches, etc. shall be removed from facility. Silt, sand and sediment, if significant accumulation occurs, shall be removed by rubber-tired excavator annually. Material removed from the basin shall be disposed of in accordance with all applicable local, state, and federal regulations. The detention basin and vehicular access shall be kept free of woody vegetation by mowing at least twice per year. Reseeding, weed control, and invasive species removal may need to be performed periodically to maintain healthy vegetation and maintain the pollutant removal efficiency of the facilities. In the case that water remains for greater than 24 hours after a storm event, an inspection is warranted and necessary maintenance or repairs to the outlet control structure or bottom of the basin may be necessary. Any slope erosion within the facility shall be stabilized and repaired as soon as practical.

Cost: \$500-\$1000 per cleaning if excavator is necessary to remove sediment. The Owner should consult local landscape contractors for a detailed cost estimate.

5. Proprietary Pretreatment Units – The proprietary pretreatment units shall be inspected and maintained from the surface, without entry into the unit a minimum of annually and following heavy rain events. Perform maintenance once the stored volume reaches 15% of the unit capacity, or immediately in the event of a spill. Perform Maintenance at quarterly intervals during the first year of installation, so an accurate maintenance schedule can be established. Sediment and debris should be removed through the 24-inch diameter outlet riser pipe. Alternatively, oil and floatables should be removed through the 18-inch oil inspection port. The requirements for the disposal from the units should be in compliance with all local, state and federal regulations. Consult the Medfield Board of Health for transfer station locations prior to disposing the separator contents. Please refer to the Manufacturer's Manual for additional detail on proper inspection and maintenance of the First Defense units.

Cost: Cleaning should be included along with the routine maintenance of the catch basins. The property owner should consult local vacuum cleaning contractors for detailed cost estimates.

6. Subsurface Infiltration Chamber System - Proper maintenance of the subsurface infiltration system is essential to the long-term effectiveness of the infiltration function. The subsurface infiltration system shall have inspection ports and additional inspections should be scheduled during the first few months to ensure proper stabilization and function. Thereafter, they shall be checked semiannually and following heavy rainfalls, defined as a 1-year storm event exceeding 2.5 inches of rainfall within a twenty-four-hour period. Water levels in the chambers shall be checked to verify proper drainage. Ponding water in a chamber indicates failure from the bottom. If water remains within the chambers after 72-hours following a storm event, steps to restore the infiltration function shall be taken, as directed by a qualified stormwater management professional. In order to rectify the problem, accumulated sediment must be removed from the bottom of the chamber. The stone aggregate and filter fabric must be removed and replaced, and the underlying soil layer must be scarified to encourage proper infiltration. Material removed from the system shall be disposed of in accordance with all applicable local, state, and federal regulations. Please refer to the Manufacturer's Manual for additional detail on proper inspection and maintenance of the Cultec chambers.

Cost: The property owner should consult local landscape contractors for a detailed cost estimate.

7. Pesticides, Herbicides, and Fertilizers - Pesticides and herbicides shall be used sparingly. Fertilizers should be restricted to the use of organic fertilizers only.

All structural BMP's as identified on the site plans will be owned and maintained by the homeowner's association of the development and shall run with the title of the property.

Cost: Included in the routine landscaping maintenance schedule. The Owner should consult local landscaping contractors for details.

8. Snow Removal - Snow accumulations removed from driveway and parking areas should be placed in upland areas only, where sand and other debris will remain after snowmelt for later removal. Excess snow should be removed from the site and properly disposed of in an approved snow disposal facility. Care must be exercised not to deposit snow in the following areas: in the rain gardens, bioswales, and where sand and debris can get into the watercourse.

Cost: The owner should consult local snow removal contractors for a detailed cost estimate.

Maintenance Responsibilities

All post construction maintenance activities should be documented and kept on file and made available to the Pembroke DPW, in addition to the Planning Board upon request. To develop and implement an operation and maintenance program with the goal of preventing or reducing pollutant runoff by keeping potential pollutants from coming into contact with stormwater or being transported off site without treatment, the following efforts will be made:

- Property Management awareness and training on how to incorporate pollution prevention techniques into maintenance operations.
- Follow appropriate best management practices (BMPs) by proper maintenance and inspection procedures.

Long-Term Pollution Prevention Plan Good Housekeeping:

Storage and Disposal of Waste and Toxics:

Failure to properly store hazardous materials dramatically increases the probability that they will end up in local waterways. Practices such as covering hazardous materials or even storing them properly, can have dramatic impacts.

The exterior storage of hazardous materials on site shall be prohibited.

The following is a list of management considerations for hazardous materials as outlined by the EPA:

- Ensuring sufficient aisle space to provide access for inspections and to improve the ease of material transport;
- Storing materials well away from high-traffic areas to reduce the likelihood of accidents that might cause spills or damage to drums, bags, or containers.
- Stacking containers in accordance with the manufacturers' directions to avoid damaging the container or the product itself;
- Storing containers on pallets or equivalent structures. This facilitates inspection for leaks and prevents the containers from coming into contact with wet floors, which can cause corrosion. This consideration also reduces the incidence of damage by pests.

Landscape Maintenance:

Using proper landscaping techniques can effectively increase the value of a property while benefiting the environment. These practices can benefit the environment by reducing water use; decreasing energy use (because less water pumping and treatment is required); minimizing runoff of storm and irrigation water that transports soils, fertilizers, and pesticides; and creating additional habitat for plants and wildlife. The following lawn and landscaping management practices will be encouraged:

- Mow lawn areas at the highest recommended height.
- Minimize lawn size and maintain existing native vegetation.
- Abide by water restrictions and other conservation measures implemented by the Town of Pembroke.
- Water only when necessary.
- Use automatic irrigation systems to reduce water use.

Integrated Pest Management (IPM):

This management measure seeks to limit the adverse impacts of insecticides and herbicides by providing information on alternative pest control techniques other than chemicals or explaining how to determine the correct dosages needed to manage pests.

The presence of pesticides in stormwater runoff has a direct impact on the health of aquatic organisms and can present a threat to humans through contamination of drinking water supplies. The pesticides of greatest concern are insecticides, such as diazinon and chloropyrifos, which even at very low levels can be harmful to aquatic life.

The following IPM practices will be encouraged:

- Pesticides and herbicides shall be used sparingly. Fertilizers should be restricted to the use of organic fertilizers only.
- Lawn care and landscaping management programs including appropriate pesticide use management as part of program.

Illicit Discharges:

Illicit discharges are non-stormwater discharges to the storm drain system which typically contain bacteria and other pollutants. All illicit discharges are prohibited. Any illicit discharges should be reported to MassDOT and/or the DPW as applicable to be addressed in accordance with their respective policies.

The following is a list of EPA allowed non-stormwater discharges. If the non-stormwater discharge is not listed, it is prohibited.

- 1. Water line flushing,
- 2. Landscape irrigation,
- 3. Diverted stream flows,
- 4. Rising ground waters,
- 5. Uncontaminated ground water infiltration (as defined at 40 CFR 35.2005(20)),
- 6. Uncontaminated pumped ground water,
- 7. Discharge from potable water sources,
- 8. Foundation drains,
- 9. Air conditioning condensation,
- 10. Irrigation water, springs,
- 11. Water from crawl space pumps,
- 12. Footing drains,
- 13. Lawn watering,
- 14. Flows from riparian habitats and wetlands,
- 15. Street wash water,
- 16. Discharges or flows from fire fighting activities occur during emergency conditions.

Spill Containment and Management Plan

Initial Notification

In the event of a spill, the facility manager will be notified immediately.

Facility Managers (name)

Assessment - Initial Containment

The supervisor will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. The supervisor will first contact the Fire Department and then notify the Police Department, Department of Public Works, Board of Health and Conservation Commission. The fire department is ultimately responsible for matters of public health and safety and should be notified immediately.

Contact:	Phone Number:
Fire Department:	911
Police Department:	911
Department of Public Works:	(781) 293 5620
Board of Health Phone:	(781) 293 2718
Conservation Commission Phone:	(781) 293 4674

Further Notification

Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the facility office and readily accessible to all employees.

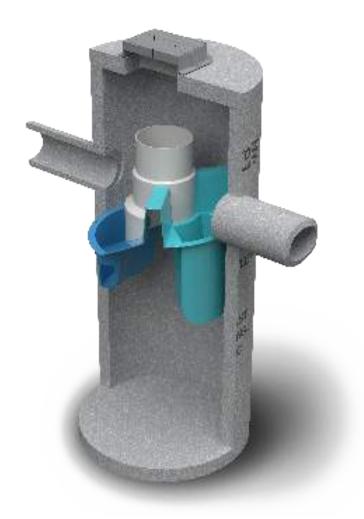
HAZARDOUS WASTE / OIL SPILL REPORT

Date <u>//</u> /		Time	AM / PM		
Exact location (Trai	nsformer #)				
Type of equipment					
S / N					
On or near water					
	□ No	ii yee	, name of body of	water	
Type of chemical /	oil spilled				
Amount of chemica					
Cause of spill	· · ·				
Measures taken to	contain or clear	n up spill			
Amount of chemica			Method		
Material collected a		•			
dru	_				
dru	-				
	-				
Location and metho	od of debris disp	osal			
Name and address	of any person,	firm, or corpo	ration suffering da	amages	
Procedures, metho	d, and precautio	ons instituted	to prevent a simil	ar occurrence from	recurring
Spill reported to Ge	eneral Office by			Time	AM / PM
Spill reported to DE	P / National Re	sponse Cente	er by		
DEP Date/	1	Time	AM / PM	Inspector	
NRC Date /	1	Time	AM / PM	Inspector	

EMERGENCY RESPONSE EQUIPMENT INVENTORY

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.

-- SORBENT PADS


- 1 BALE
- -- SAND BAGS (empty)
- -- SPEEDI-DRI ABSORBENT
- -- SQUARE END SHOVELS
- -- PRY BAR

- 5
- 1-40LB BAGS
- 1 1

EMERGENCY NOTIFICATION PHONE NUMBERS

1.	FACILITY MANAGER	
	NAME:	BEEPER:
	PHONE:	CELL PHONE:
	ALTERNATE:	
		BEEPER: N/A
	PHONE:	CEL PHONE:
2.	FIRE DEPARTMENT	
	EMERGENCY: 911	
	BUSINESS: (781) 293 2300	
	POLICE DEPARTMENT	
	EMERGENCY: 911	
	BUSINESS: (781) 293 6363	
	DEPARTMENT OF PUBLIC WORKS	
	BUSINESS: (781) 293 5620	
3.	MASSACHUSETTS DEPARTMENT OF	ENVIRONMENTAL PROTECTION
-	EMERGENCY: (617) 556-1133	
	SOUTHEAST RÈGIÓN - LAKEV	'ILLE OFFICE: (508) 946-2700
4		
4.	NATIONAL RESPONSE CENTER PHONE: (800) 424-8802	
	FIIONE. (000) 424-0002	
	ALTERNATE: U.S. ENVIRONMENTAL	PROTECTION AGENCY
	EMERGENCY: (617) 223-7265	
	BUSINESS: (617) 860-4300	
5.	DEPARTMENT OF PUBLIC WORKS	
5.	CONTACT: Director of Public W	lorks Eugene Fulmine .Ir
	PHONE: (781) 293 5620	
	CONSERVATION COMMISSION	
	CONTACT: Conservation Agent	t, Robert Clarke
	PHONE: (781) 293 4674	
	BOARD OF HEALTH	
	CONTACT: Health Agent, Lisa (Cullity
	PHONE: (781) 293 2718	

Operation and Maintenance Manual

First Defense® High Capacity and First Defense® Optimum

Vortex Separator for Stormwater Treatment

Table of Contents

- 3 FIRST DEFENSE[®] BY HYDRO INTERNATIONAL
 - INTRODUCTION
 - OPERATION
 - POLLUTANT CAPTURE AND RETENTION
- 4 MODEL SIZES & CONFIGURATIONS
 - FIRST DEFENSE® COMPONENTS

5 MAINTENANCE

- OVERVIEW
- MAINTENANCE EQUIPMENT CONSIDERATIONS
- DETERMINING YOUR MAINTENANCE SCHEDULE
- 6 MAINTENANCE PROCEDURES
 - INSPECTION
 - FLOATABLES AND SEDIMENT CLEAN OUT
- 8 FIRST DEFENSE® INSTALLATION LOG
- 9 FIRST DEFENSE® INSPECTION AND MAINTENANCE LOG

COPYRIGHT STATEMENT: The contents of this manual, including the graphics contained herein, are intended for the use of the recipient to whom the document and all associated information are directed. Hydro International plc owns the copyright of this document, which is supplied in confidence. It must not be used for any purpose other than that for which it is supplied and must not be reproduced, in whole or in part stored in a retrieval system or transmitted in any form or by any means without prior permission in writing from Hydro International plc. First Defense[®] is a trademarked hydrodynamic vortex separation device of Hydro International plc. A patent covering the First Defense[®] has been granted.

DISCLAIMER: Information and data contained in this manual is exclusively for the purpose of assisting in the operation and maintenance of Hydro International plc's First Defense[®]. No warranty is given nor can liability be accepted for use of this information for any other purpose. Hydro International plc has a policy of continuous product development and reserves the right to amend specifications without notice.

I. First Defense® by Hydro International

Introduction

The First Defense[®] is an enhanced vortex separator that combines an effective and economical stormwater treatment chamber with an integral peak flow bypass. It efficiently removes total suspended solids (TSS), trash and hydrocarbons from stormwater runoff without washing out previously captured pollutants. The First Defense[®] is available in several model configurations to accommodate a wide range of pipe sizes, peak flows and depth constraints.

The two product models described in this guide are the First Defense[®] High Capacity and the First Defense[®] Optimum; they are inspected and maintained identically.

Operation

The First Defense[®] operates on simple fluid hydraulics. It is selfactivating, has no moving parts, no external power requirement and is fabricated with durable non-corrosive components. No manual procedures are required to operate the unit and maintenance is limited to monitoring accumulations of stored pollutants and periodic clean-outs. The First Defense[®] has been designed to allow for easy and safe access for inspection, monitoring and clean-out procedures. Neither entry into the unit nor removal of the internal components is necessary for maintenance, thus safety concerns related to confined-spaceentry are avoided.

Pollutant Capture and Retention

The internal components of the First Defense[®] have been designed to optimize pollutant capture. Sediment is captured and retained in the base of the unit, while oil and floatables are stored on the water surface in the inner volume (Fig.1).

The pollutant storage volumes are isolated from the built-in bypass chamber to prevent washout during high-flow storm events. The sump of the First Defense[®] retains a standing water level between storm events. This ensures a quiescent flow regime at the onset of a storm, preventing resuspension and washout of pollutants captured during previous events.

Accessories such as oil absorbent pads are available for enhanced oil removal and storage. Due to the separation of the oil and floatable storage volume from the outlet, the potential for washout of stored pollutants between clean-outs is minimized.

Applications

- Stormwater treatment at the point of entry into the drainage line
- Sites constrained by space, topography or drainage profiles with limited slope and depth of cover
- Retrofit installations where stormwater treatment is placed on or tied into an existing storm drain line
- · Pretreatment for filters, infiltration and storage

Advantages

- · Inlet options include surface grate or multiple inlet pipes
- Integral high capacity bypass conveys large peak flows without the need for "offline" arrangements using separate junction manholes
- Long flow path through the device ensures a long residence time within the treatment chamber, enhancing pollutant settling
- Delivered to site pre-assembled and ready for installation

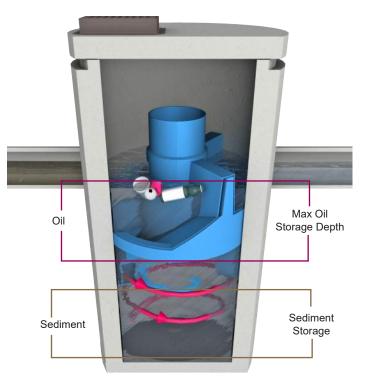
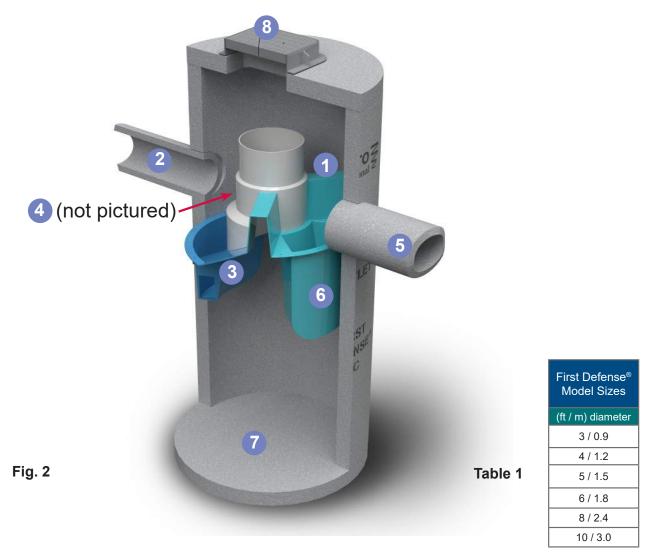


Fig.1 Pollutant storage volumes in the First Defense®.

II. Model Sizes & Configurations


The First Defense[®] inlet and internal bypass arrangements are available in several model sizes and configurations. The components have modified geometries allowing greater design flexibility to accommodate various site constraints.

All First Defense[®] models include the internal components that are designed to remove and retain total suspended solids (TSS), gross solids, floatable trash and hydrocarbons (Fig.2). First Defense[®] model sizes (diameter) are shown in Table 1.

III. Maintenance

First Defense® Components

- 1. Built-In Bypass
- 2. Inlet Pipe
- 3. Inlet Chute
- 4. Floatables Draw-off Port
- 5. Outlet Pipe
- 6. Floatables Storage
- 7. Sediment Storage
- 8. Inlet Grate or Cover

Hydro International (Stormwater), 94 Hutchins Drive, Portland ME 04102 Tel: (207) 756-6200 Fax: (207) 756-6212 Web: www.hydro-int.com

Overview

The First Defense[®] protects the environment by removing a wide range of pollutants from stormwater runoff. Periodic removal of these captured pollutants is essential to the continuous, long-term functioning of the First Defense[®]. The First Defense[®] will capture and retain sediment and oil until the sediment and oil storage volumes are full to capacity. When sediment and oil storage capacities are reached, the First Defense[®] will no longer be able to store removed sediment and oil.

The First Defense[®] allows for easy and safe inspection, monitoring and clean-out procedures. A commercially or municipally owned sump-vac is used to remove captured sediment and floatables. Access ports are located in the top of the manhole.

Maintenance events may include Inspection, Oil & Floatables Removal, and Sediment Removal. Maintenance events do not require entry into the First Defense[®], nor do they require the internal components of the First Defense[®] to be removed. In the case of inspection and floatables removal, a vactor truck is not required. However, a vactor truck is required if the maintenance event is to include oil removal and/or sediment removal.

Maintenance Equipment Considerations

The internal components of the First Defense[®] have a centrally located circular shaft through which the sediment storage sump can be accessed with a sump vac hose. The open diameter of this access shaft is 15 inches in diameter (Fig.3). Therefore, the nozzle fitting of any vactor hose used for maintenance should be less than 15 inches in diameter.

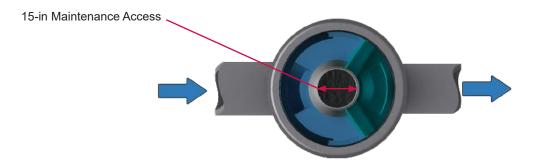


Fig.3 The central opening to the sump of the First Defense®is 15 inches in diameter.

Determining Your Maintenance Schedule

The frequency of clean out is determined in the field after installation. During the first year of operation, the unit should be inspected every six months to determine the rate of sediment and floatables accumulation. A simple probe such as a Sludge-Judge[®] can be used to determine the level of accumulated solids stored in the sump. This information can be recorded in the maintenance log (see page 9) to establish a routine maintenance schedule.

The vactor procedure, including both sediment and oil / flotables removal, for First Defense[®] typically takes less than 30 minutes and removes a combined water/oil volume of about 765 gallons.

Inspection Procedures

- Set up any necessary safety equipment around the access port or grate of the First Defense[®] as stipulated by local ordinances. Safety equipment should notify passing pedestrian and road traffic that work is being done.
- 2. Remove the grate or lid to the manhole.
- Without entering the vessel, look down into the chamber to inspect the inside. Make note of any irregularities. Fig.4 shows the standing water level that should be observed.
- **4.** Without entering the vessel, use the pole with the skimmer net to remove floatables and loose debris from the components and water surface.
- Using a sediment probe such as a Sludge Judge[®], measure the depth of sediment that has collected in the sump of the vessel.
- 6. On the Maintenance Log (see page 9), record the date, unit location, estimated volume of floatables and gross debris removed, and the depth of sediment measured. Also note any apparent irregularities such as damaged components or blockages.
- 7. Securely replace the grate or lid.
- 8. Take down safety equipment.
- Notify Hydro International of any irregularities noted during inspection.

Floatables and Sediment Clean Out

Floatables clean out is typically done in conjunction with sediment removal. A commercially or municipally owned sumpvac is used to remove captured sediment and floatables (Fig.4).

Floatables and loose debris can also be netted with a skimmer and pole. The access port located at the top of the manhole provides unobstructed access for a vactor hose to be lowered to the base of the sump.

Scheduling

- Floatables and sump clean out are typically conducted once a year during any season.
- Floatables and sump clean out should occur as soon as possible following a spill in the contributing drainage area.

First Defense® Operation and Maintenance Manual

Fig.4 Floatables are removed with a vactor hose

Recommended Equipment

- · Safety Equipment (traffic cones, etc)
- · Crow bar or other tool to remove grate or lid
- Pole with skimmer or net (if only floatables are being removed)
- Sediment probe (such as a Sludge Judge[®])
- · Vactor truck (flexible hose recommended)
- First Defense® Maintenance Log

Hydro International (Stormwater), 94 Hutchins Drive, Portland ME 04102 Tel: (207) 756-6200 Fax: (207) 756-6212 Web: www.hydro-int.com

Page | 6

Floatables and Sediment Clean Out Procedures

- Set up any necessary safety equipment around the access port or grate of the First Defense[®] as stipulated by local ordinances. Safety equipment should notify passing pedestrian and road traffic that work is being done.
- 2. Remove the grate or lid to the manhole.
- **3.** Without entering the vessel, look down into the chamber to inspect the inside. Make note of any irregularities.
- 4. Remove oil and floatables stored on the surface of the water with the vactor hose or with the skimmer or net
- Using a sediment probe such as a Sludge Judge[®], measure the depth of sediment that has collected in the sump of the vessel and record it in the Maintenance Log (page 9).
- Once all floatables have been removed, drop the vactor hose to the base of the sump. Vactor out the sediment and gross debris off the sump floor
- 7. Retract the vactor hose from the vessel.
- 8. On the Maintenance Log provided by Hydro International, record the date, unit location, estimated volume of floatables and gross debris removed, and the depth of sediment measured. Also note any apparent irregularities such as damaged components, blockages, or irregularly high or low water levels.
- 9. Securely replace the grate or lid.

Maintenance at a Glance

Inspection	- Regularly during first year of installation - Every 6 months after the first year of installation	
Oil and Floatables Removal	- Once per year, with sediment removal - Following a spill in the drainage area	
Sediment Removal	- Once per year or as needed - Following a spill in the drainage area	
NOTE: For most clean outs the entire volume of liquid does not need to be removed from the manhole. Only remove the first few inches of oils and floatables from the water surface to reduce the total volume of liquid removed during a clean out.		

First Defense® Installation Log

HYDRO INTERNATIONAL REFERENCE NUMBER:		
SITE NAME:		
SITE LOCATION:		
OWNER:	CONTRACTOR:	
CONTACT NAME:	CONTACT NAME:	
COMPANY NAME:	COMPANY NAME:	
ADDRESS:	ADDRESS:	
TELEPHONE:	TELEPHONE:	
FAX:	FAX:	

INSTALLATION DATE: / /

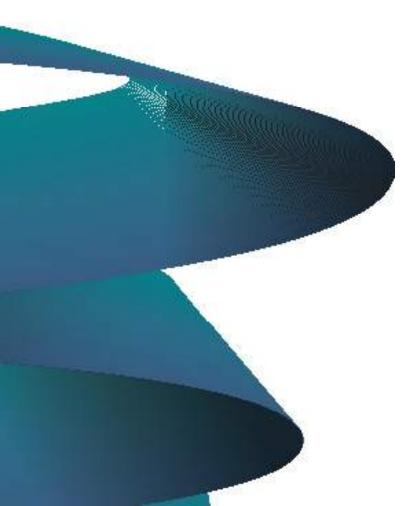
MODEL SIZE (CIRCLE ONE):[3-FT][4-FT][5-FT][6-FT][8-FT][10-FT]INLET (CIRCLE ALL THAT APPLY):GRATED INLET (CATCH BASIN)INLET PIPE (FLOW THROUGH)

First Defense[®] Inspection and Maintenance Log

Date	Initials	Depth of Floatables and Oils	Sediment Depth Measured	Volume of Sediment Removed	Site Activity and Comments

Hydro International (Stormwater), 94 Hutchins Drive, Portland ME 04102 Tel: (207) 756-6200 Fax: (207) 756-6212 Web: www.hydro-int.com

Notes


Stormwater Solutions

94 Hutchins Drive Portland, ME 04102

Tel: (207) 756-6200 Fax: (207) 756-6212 stormwaterinquiry@hydro-int.com

www.hydro-int.com

Turning Water Around...® FD_O+M_J_2009(2)

Contactor® & Recharger® Stormwater Chambers

Operation and Maintenance Guidelines for CULTEC Stormwater Management Systems

The Founder of Plastic Chamber Technology www.cultec.com | 1(800) 4-CULTEC | f in

Published by **CULTEC, Inc.** P.O. Box 280 878 Federal Road Brookfield, Connecticut 06804 USA www.cultec.com

Copyright Notice

© 2017 CULTEC, Inc. All rights reserved. Printed in the USA.

This document and any accompanying CULTEC products are copyrighted by CULTEC, Inc. Any reproduction and/or distribution without prior written consent from CULTEC, Inc. is strictly prohibited.

Disclaimers:

The drawings, photographs and illustrations shown in this document are for illustrative purposes only and are not necessarily to scale. Actual designs may vary.

CULTEC reserves the right to make design and/or specification changes at any time without notice at CULTEC's sole discretion.

CULTEC is not responsible for typographical errors.

Protected by one or more of the following patents:

Protected by one or more of the following patents:

U.S. Patents 6,129,482; 6,322,288; 6,854,925; 7,226,241; 7,806,627; 8,366,346; 8,425,148; and others; U.S. Designs D613819; D638,095; D668,318 and others; Canadian Patent 2,591,255 and others; Community Designs 1092191; 1745209; and others.

CULTEC, the CULTEC logo, RECHARGER, CONTACTOR, HVLV, PAC, STORMFILTER, STORMGENIE and The Chamber with The Stripe are registered trademarks of CULTEC, Inc. Chamber of Choice, 902, HD, 100, 125, 150, 150XL, 180, 280, 330, 330XL, V8, 902, Field Drain Panel, C-1, C-2, C-3, C-4, EZ-24, Landscape Series are trademarks of CULTEC, Inc. All rights reserved.

Contact Information:

For general information on our other products and services, please contact our offices within the United States at (800)428-5832, (203)775-4416 ext. 202, or e-mail us at custservice@cultec.com.

For technical support, please call (203)775-4416 ext. 203 or e-mail tech@cultec.com.

Visit www.cultec.com/downloads.html for Product Downloads and CAD details.

Doc ID: CULG008 05-17 May 2017

These instructions are for single-layer traffic applications only. For multi-layer applications, contact CULTEC. All illustrations and photos shown herein are examples of typical situations. Be sure to follow the engineer's drawings. Actual designs may vary.

This manual contains guidelines recommended by CULTEC, Inc. and may be used in conjunction with, but not to supersede, local regulations or regulatory authorities. OSHA Guidelines must be followed when inspecting or cleaning any structure.

Introduction

The CULTEC Subsurface Stormwater Management System is a high-density polyethylene (HDPE) chamber system arranged in parallel rows surrounded by washed stone. The CULTEC chambers create arch-shaped voids within the washed stone to provide stormwater detention, retention, infiltration, and reclamation. Filter fabric is placed between the native soil and stone interface to prevent the intrusion of fines into the system. In order to minimize the amount of sediment which may enter the CULTEC system, a sediment collection device (stormwater pretreatment device) is recommended upstream from the CULTEC chamber system. Examples of pretreatment devices include, but are not limited to, an appropriately sized catch basin with sump, pretreatment catchment device, oil grit separator, or baffled distribution box. Manufactured pretreatment devices may also be used in accordance with CULTEC chambers. Installation, operation, and maintenance of these devices shall be in accordance with manufacturer's recommendations. Almost all of the sediment entering the stormwater management system will be collected within the pretreatment device.

Best Management Practices allow for the maintenance of the preliminary collection systems prior to feeding the CULTEC chambers. The pretreatment structures shall be inspected for any debris that will restrict inlet flow rates. Outfall structures, if any, such as outlet control must also be inspected for any obstructions that would restrict outlet flow rates. OSHA Guidelines must be followed when inspecting or cleaning any structure.

Operation and Maintenance Requirements

I. Operation

CULTEC stormwater management systems shall be operated to receive only stormwater run-off in accordance with applicable local regulations. CULTEC subsurface stormwater management chambers operate at peak performance when installed in series with pretreatment. Pretreatment of suspended solids is superior to treatment of solids once they have been introduced into the system. The use of pretreatment is adequate as long as the structure is maintained and the site remains stable with finished impervious surfaces such as parking lots, walkways, and pervious areas are properly maintained. If there is to be an unstable condition, such as improvements to buildings or parking areas, all proper silt control measures shall be implemented according to local regulations.

II. Inspection and Maintenance Options

- A. The CULTEC system may be equipped with an inspection port located on the inlet row. The inspection port is a circular cast box placed in a rectangular concrete collar. When the lid is removed, a 6-inch (150 mm) pipe with a screw-in plug will be exposed. Remove the plug. This will provide access to the CULTEC Chamber row below. From the surface, through this access, the sediment may be measured at this location. A stadia rod may be used to measure the depth of sediment if any in this row. If the depth of sediment is in excess of 3 inches (76 mm), then this row should be cleaned with high pressure water through a culvert cleaning nozzle. This would be carried out through an upstream manhole or through the CULTEC StormFilter Unit (or other pretreatment device). CCTV inspection of this row can be deployed through this access port to deter mine if any sediment has accumulated in the inlet row.
- **B.** If the CULTEC bed is not equipped with an inspection port, then access to the inlet row will be through an upstream manhole or the CULTEC StormFilter.

1. Manhole Access

This inspection should only be carried out by persons trained in confined space entry and sewer inspection services. After the manhole cover has been removed a gas detector must be lowered into the manhole to ensure that there are not high concentrations of toxic gases present. The inspector should be lowered into the manhole with the proper safety equipment as per OSHA requirements. The inspector may be able to observe sediment from this location. If this is not possible, the inspector will need to deploy a CCTV robot to permit viewing of the sediment.

2. StormFilter Access

Remove the manhole cover to allow access to the unit. Typically a 30-inch (750 mm) pipe is used as a riser from the StormFilter to the surface. As in the case with manhole access, this access point requires a technician trained in confined space entry with proper gas detection equipment. This individual must be equipped with the proper safety equipment for entry into the StormFilter. The technician will be lowered onto the StormFilter unit. The hatch on the unit must be removed. Inside the unit are two filters which may be removed according to StormFilter maintenance guidelines. Once these filters are removed the inspector can enter the StormFilter unit to launch the CCTV camera robot.

C. The inlet row of the CULTEC system is placed on a polyethylene liner to prevent scouring of the washed stone beneath this row. This also facilitates the flushing of this row with high pressure water through a culvert cleaning nozzle. The nozzle is deployed through a manhole or the StormFilter and extended to the end of the row. The water is turned on and the inlet row is back-flushed into the manhole or StormFilter. This water is to be removed from the manhole or StormFilter using a vacuum truck.

III. Maintenance Guidelines

The following guidelines shall be adhered to for the operation and maintenance of the CULTEC stormwater management system:

- **A.** The owner shall keep a maintenance log which shall include details of any events which would have an effect on the system's operational capacity.
- **B.** The operation and maintenance procedure shall be reviewed periodically and changed to meet site conditions.
- **C.** Maintenance of the stormwater management system shall be performed by qualified workers and shall follow applicable occupational health and safety requirements.
- **D.** Debris removed from the stormwater management system shall be disposed of in accordance with applicable laws and regulations.

IV. Suggested Maintenance Schedules

A. Minor Maintenance

The following suggested schedule shall be followed for routine maintenance during the regular operation of the stormwater system:

Frequency	Action
Monthly in first year	Check inlets and outlets for clogging and remove any debris, as required.
Spring and Fall	Check inlets and outlets for clogging and remove any debris, as required.
One year after commissioning and every third year following	Check inlets and outlets for clogging and remove any debris, as required.

B. Major Maintenance

The following suggested maintenance schedule shall be followed to maintain the performance of the CULTEC stormwater management chambers. Additional work may be necessary due to insufficient performance and other issues that might be found during the inspection of the stormwater management chambers. (See table on next page)

	Frequency	Action
Inlets and Outlets	Every 3 years	Obtain documentation that the inlets, outlets and vents have been cleaned and will function as intended.
	Spring and Fall	 Check inlet and outlets for clogging and remove any debris as re- quired.
CULTEC Stormwater Chambers	2 years after commis- sioning	 Inspect the interior of the stormwater management chambers through inspection port for deficiencies using CCTV or comparable technique.
		• Obtain documentation that the stormwater management chambers and feed connectors will function as anticipated.
	9 years after commis- sioning every 9 years following	Clean stormwater management chambers and feed connectors of any debris.
		• Inspect the interior of the stormwater management structures for deficiencies using CCTV or comparable technique.
		• Obtain documentation that the stormwater management chambers and feed connectors have been cleaned and will function as intended.
	45 years after com- missioning	Clean stormwater management chambers and feed connectors of any debris.
		• Determine the remaining life expectancy of the stormwater man- agement chambers and recommended schedule and actions to reha- bilitate the stormwater management chambers as required.
		• Inspect the interior of the stormwater management chambers for deficiencies using CCTV or comparable technique.
		• Replace or restore the stormwater management chambers in accor- dance with the schedule determined at the 45-year inspection.
		Attain the appropriate approvals as required.
		Establish a new operation and maintenance schedule.
Surrounding Site	Monthly in 1 st year	Check for depressions in areas over and surrounding the stormwater management system.
	Spring and Fall	Check for depressions in areas over and surrounding the stormwater management system.
	Yearly	• Confirm that no unauthorized modifications have been performed to the site.

For additional information concerning the maintenance of CULTEC Subsurface Stormwater Management Chambers, please contact CULTEC, Inc. at 1-800-428-5832.

WQMP Operation & Maintenance (O&M) Plan

Project Name:_____

Prepared for:

Project Name: _____

Address:_____

City, State Zip:_____

Prepared on:

Date:_____

This O&M Plan describes the designated responsible party for implementation of this WQMP, including: operation and maintenance of all the structural BMP(s), conducting the training/educational program and duties, and any other necessary activities. The O&M Plan includes detailed inspection and maintenance requirements for all structural BMPs, including copies of any maintenance contract agreements, manufacturer's maintenance requirements, permits, etc.

8.1.1 Project Information

Project name	
Address	
City, State Zip	
Site size	
List of structural BMPs, number of each	
Other notes	

8.1.2 Responsible Party

The responsible party for implementation of this WQMP is:

Name of Person or HOA Property Manager	
Address	
City, State Zip	
Phone number	
24-Hour Emergency Contact number	
Email	

8.1.3 Record Keeping

Parties responsible for the O&M plan shall retain records for at least 5 years.

All training and educational activities and BMP operation and maintenance shall be documented to verify compliance with this O&M Plan. A sample Training Log and Inspection and Maintenance Log are included in this document.

8.1.4 Electronic Data Submittal

This document along with the Site Plan and Attachments shall be provided in PDF format. AutoCAD files and/or GIS coordinates of BMPs shall also be submitted to the City.

Appendix ____

BMP SITE PLAN

Site plan is preferred on minimum 11" by 17" colored sheets, as long as legible.

BMP OPERATION & MAINTENANCE LOG

Project Name:	
Today's Date:	
Name of Person Performing Activity (Printed):	
Signature:	

BMP Name (As Shown in O&M Plan)	Brief Description of Implementation, Maintenance, and Inspection Activity Performed

Minor Maintenance

Frequency		Action
Monthly in fir	st year	Check inlets and outlets for clogging and remove any debris, as required.
		Notes
🗆 Month 1	Date:	
🗆 Month 2	Date:	
🗆 Month 3	Date:	
🗆 Month 4	Date	
🗆 Month 5	Date:	
🗆 Month 6	Date:	
🗆 Month 7	Date:	
🗆 Month 8	Date:	
🗆 Month 9	Date:	
🗆 Month 10	Date:	
🗆 Month 11	Date:	
🗆 Month 12	Date:	
Spring and Fa	all	Check inlets and outlets for clogging and remove any debris, as required.
		Notes
Spring	Date:	
🗆 Fall	Date:	
Spring	Date:	
🗆 Fall	Date:	
Spring	Date:	
Fall	Date:	
Spring	Date:	
🗆 Fall	Date:	
Spring	Date:	
🗆 Fall	Date:	
Spring	Date:	
🗆 Fall	Date:	
	er commissioning	Check inlets and outlets for clogging and remove any debris, as required.
-	rd year following	Notes
🗆 Year 1	Date:	
🗆 Year 4	Date:	
🗆 Year 7	Date:	
🗆 Year 10	Date:	
🗆 Year 13	Date:	
🗆 Year 16	Date:	
🗆 Year 19	Date:	
🗆 Year 22	Date:	

Major Maintenance

	Frequency		Action
	Every 3 years		Obtain documentation that the inlets, outlets and vents have been cleaned and will function as intended.
		1	Notes
	🗆 Year 1	Date:	
	🗆 Year 4	Date:	
	🗆 Year 7	Date:	
	🗆 Year 10	Date:	
	🗆 Year 13	Date:	
Ś	🗆 Year 16	Date:	
let	🗆 Year 19	Date:	
Out	🗆 Year 22	Date:	
Year 19 Year 22 Spring and Fall Spring			Check inlet and outlets for clogging and remove any debris, as required.
lets		1	Notes
In	Spring	Date:	
	🗆 Fall	Date:	
	Spring	Date:	
	🗆 Fall	Date:	
	Spring	Date:	
	🗆 Fall	Date:	
	Spring	Date:	
	🗆 Fall	Date:	
	Spring	Date:	
	Fall	Date:	
	Spring	Date:	
	🗆 Fall	Date:	
ຽ 2 years after commissioning		nmissioning	 Inspect the interior of the stormwater management chambers through inspection port for deficiencies using CCTV or comparable technique.
r Cham			 Obtain documentation that the stormwater management chambers and feed connectors will function as anticipated.
atei			Notes
tormwa	□ Year 2	Date:	
CULTEC Stormwater Chambers			
CC			

Major Maintenance

	Frequency		Action	
	9 years after commissioning every 9 years following		 Clean stormwater management chambers and feed connectors of any debris. 	
			 Inspect the interior of the stormwater management structures for deficiencies using CCTV or comparable technique. 	
			 Obtain documentation that the stormwater man- agement chambers and feed connectors have been cleaned and will function as intended. 	
			Notes	
	🗆 Year 9	Date:		
	🗆 Year 18	Date:		
	D Year 27	Date:		
bers	D Year 36	Date:		
Cham	45 years after co	ommissioning	 Clean stormwater management chambers and feed connectors of any debris. 	
CULTEC Stormwater Chambers			 Determine the remaining life expectancy of the stormwater management chambers and recommended schedule and actions to rehabilitate the stormwater management chambers as required. 	
EC Stori			 Inspect the interior of the stormwater management chambers for deficiencies using CCTV or comparable technique. 	
CULT			 Replace or restore the stormwater management chambers in accordance with the schedule determined at the 45-year inspection. 	
			□ Attain the appropriate approvals as required.	
			 Establish a new operation and maintenance sched- ule. 	
		1	Notes	
	🗆 Year 45	Date:		

Major Maintenance

	Frequency		Action
	Monthly in 1 st year		 Check for depressions in areas over and surrounding the stormwater management system.
			Notes
	🗆 Month 1	Date:	
	D Month 2	Date:	
	Month 3	Date:	
	🗆 Month 4	Date:	
	🗆 Month 5	Date:	
	🗆 Month 6	Date:	
	🗆 Month 7	Date:	
	🗆 Month 8	Date:	
	🗆 Month 9	Date:	
	🗆 Month 10	Date:	
	🗆 Month 11	Date:	
	🗆 Month 12	Date:	
	Spring and Fall		 Check for depressions in areas over and surrounding the stormwater management system.
ite			Notes
Surrounding Site	Spring	Date:	
lin	Fall	Date:	
un un	□ Spring	Date:	
l o'	🗆 Fall	Date:	
Sur	□ Spring	Date:	
	🗆 Fall	Date:	
	Spring	Date:	
	🗆 Fall	Date:	
	Spring	Date:	
	🗆 Fall	Date:	
	Spring	Date:	
	□ Fall	Date:	
	Yearly		 Confirm that no unauthorized modifications have been performed to the site.
	V_=== 1	Г_	Notes
	Year 1	Date:	
	D Year 2	Date:	
	□ Year 3	Date:	
	□ Year 4	Date:	
	🗆 Year 5	Date:	
	🗆 Year 6	Date:	
	🗆 Year 7	Date:	

The Founder of Plastic Chamber Technology www.cultec.com | 1(800) 4-CULTEC | f in

B Federal Road | P.O. Box 280 | Brookfield , CT 06804 US

CULG008 05-17